Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,20 +13,6 @@ def parse_list_boxes(text):
|
|
| 13 |
matches = re.findall(pattern, text)
|
| 14 |
return [[float(m) for m in match] for match in matches]
|
| 15 |
|
| 16 |
-
'''def draw_bounding_boxes(image, boxes):
|
| 17 |
-
"""Zeichnet Bounding Boxes auf das Bild"""
|
| 18 |
-
draw = ImageDraw.Draw(image)
|
| 19 |
-
width, height = image.size
|
| 20 |
-
for box in boxes:
|
| 21 |
-
ymin, xmin, ymax, xmax = box
|
| 22 |
-
draw.rectangle([
|
| 23 |
-
xmin * width,
|
| 24 |
-
ymin * height,
|
| 25 |
-
xmax * width,
|
| 26 |
-
ymax * height
|
| 27 |
-
], outline="red", width=3)
|
| 28 |
-
return image'''
|
| 29 |
-
|
| 30 |
def draw_bounding_boxes(image, boxes):
|
| 31 |
"""Zeichnet Bounding Boxes auf das Bild"""
|
| 32 |
draw = ImageDraw.Draw(image)
|
|
@@ -39,15 +25,15 @@ def draw_bounding_boxes(image, boxes):
|
|
| 39 |
ymax = max(0.0, min(1.0, box[2]))
|
| 40 |
xmax = max(0.0, min(1.0, box[3]))
|
| 41 |
|
|
|
|
| 42 |
draw.rectangle([
|
| 43 |
xmin * width,
|
| 44 |
ymin * height,
|
| 45 |
xmax * width,
|
| 46 |
ymax * height
|
| 47 |
-
], outline="
|
| 48 |
return image
|
| 49 |
|
| 50 |
-
|
| 51 |
# Streamlit UI
|
| 52 |
st.title("Bildanalyse mit Gemini")
|
| 53 |
col1, col2 = st.columns(2)
|
|
@@ -58,6 +44,7 @@ with col1:
|
|
| 58 |
|
| 59 |
if uploaded_file and object_name:
|
| 60 |
image = Image.open(uploaded_file)
|
|
|
|
| 61 |
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
|
| 62 |
|
| 63 |
if st.button("Analysieren"):
|
|
@@ -82,34 +69,62 @@ with col1:
|
|
| 82 |
|
| 83 |
# Objekterkennung
|
| 84 |
detection_prompt = (
|
| 85 |
-
f"Gib
|
| 86 |
-
"[ymin, xmin, ymax, xmax] als Liste
|
|
|
|
| 87 |
)
|
| 88 |
box_response = client.models.generate_content(
|
| 89 |
model="gemini-2.0-flash-exp",
|
| 90 |
contents=[detection_prompt, image_part]
|
| 91 |
)
|
| 92 |
-
st.write("Raw API Response:", box_response.text)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
# Verarbeitung
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
annotated_image = image.copy()
|
| 97 |
|
| 98 |
if boxes:
|
| 99 |
annotated_image = draw_bounding_boxes(annotated_image, boxes)
|
| 100 |
result_text = f"{len(boxes)} {object_name} erkannt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
else:
|
| 102 |
result_text = "Keine Objekte gefunden"
|
|
|
|
| 103 |
|
| 104 |
# Ergebnisse anzeigen
|
| 105 |
with col2:
|
| 106 |
-
st.write("## Objekterkennung:")
|
| 107 |
-
st.write(result_text)
|
| 108 |
-
st.image(annotated_image, caption="Erkannte Objekte", use_container_width=True)
|
| 109 |
-
|
| 110 |
st.write("## Beschreibung:")
|
| 111 |
st.write(desc_response.text)
|
| 112 |
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
except Exception as e:
|
| 115 |
st.error(f"Fehler: {str(e)}")
|
|
|
|
| 13 |
matches = re.findall(pattern, text)
|
| 14 |
return [[float(m) for m in match] for match in matches]
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def draw_bounding_boxes(image, boxes):
|
| 17 |
"""Zeichnet Bounding Boxes auf das Bild"""
|
| 18 |
draw = ImageDraw.Draw(image)
|
|
|
|
| 25 |
ymax = max(0.0, min(1.0, box[2]))
|
| 26 |
xmax = max(0.0, min(1.0, box[3]))
|
| 27 |
|
| 28 |
+
# Zeichne den Rahmen
|
| 29 |
draw.rectangle([
|
| 30 |
xmin * width,
|
| 31 |
ymin * height,
|
| 32 |
xmax * width,
|
| 33 |
ymax * height
|
| 34 |
+
], outline="#00FF00", width=7) # Neon green mit dicken Linien
|
| 35 |
return image
|
| 36 |
|
|
|
|
| 37 |
# Streamlit UI
|
| 38 |
st.title("Bildanalyse mit Gemini")
|
| 39 |
col1, col2 = st.columns(2)
|
|
|
|
| 44 |
|
| 45 |
if uploaded_file and object_name:
|
| 46 |
image = Image.open(uploaded_file)
|
| 47 |
+
width, height = image.size
|
| 48 |
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
|
| 49 |
|
| 50 |
if st.button("Analysieren"):
|
|
|
|
| 69 |
|
| 70 |
# Objekterkennung
|
| 71 |
detection_prompt = (
|
| 72 |
+
f"Gib exakt 4 Dezimalzahlen pro Box für alle {object_name} im Format "
|
| 73 |
+
"[ymin, xmin, ymax, xmax] als reine Python-Liste ohne weiteren Text. "
|
| 74 |
+
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
|
| 75 |
)
|
| 76 |
box_response = client.models.generate_content(
|
| 77 |
model="gemini-2.0-flash-exp",
|
| 78 |
contents=[detection_prompt, image_part]
|
| 79 |
)
|
|
|
|
| 80 |
|
| 81 |
+
# Debug-Ausgaben
|
| 82 |
+
st.write("**Raw API Response:**", box_response.text)
|
| 83 |
+
|
| 84 |
# Verarbeitung
|
| 85 |
+
try:
|
| 86 |
+
boxes = parse_list_boxes(box_response.text)
|
| 87 |
+
st.write("**Parsed Boxes:**", boxes)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
st.error(f"Parsing Error: {str(e)}")
|
| 90 |
+
boxes = []
|
| 91 |
+
|
| 92 |
annotated_image = image.copy()
|
| 93 |
|
| 94 |
if boxes:
|
| 95 |
annotated_image = draw_bounding_boxes(annotated_image, boxes)
|
| 96 |
result_text = f"{len(boxes)} {object_name} erkannt"
|
| 97 |
+
|
| 98 |
+
# Zoom auf erste Box
|
| 99 |
+
ymin, xmin, ymax, xmax = boxes[0]
|
| 100 |
+
zoom_area = (
|
| 101 |
+
max(0, int(xmin * width - 50)),
|
| 102 |
+
max(0, int(ymin * height - 50)),
|
| 103 |
+
min(width, int(xmax * width + 50)),
|
| 104 |
+
min(height, int(ymax * height + 50))
|
| 105 |
+
)
|
| 106 |
+
zoomed_image = annotated_image.crop(zoom_area)
|
| 107 |
+
|
| 108 |
else:
|
| 109 |
result_text = "Keine Objekte gefunden"
|
| 110 |
+
zoomed_image = None
|
| 111 |
|
| 112 |
# Ergebnisse anzeigen
|
| 113 |
with col2:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
st.write("## Beschreibung:")
|
| 115 |
st.write(desc_response.text)
|
| 116 |
|
| 117 |
+
st.write("## Objekterkennung:")
|
| 118 |
+
st.write(result_text)
|
| 119 |
|
| 120 |
+
if boxes:
|
| 121 |
+
st.image(
|
| 122 |
+
[annotated_image, zoomed_image],
|
| 123 |
+
caption=["Gesamtbild", "Zoom auf Erkennung"],
|
| 124 |
+
width=400
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
st.image(annotated_image, caption="Keine Objekte erkannt", width=400)
|
| 128 |
+
|
| 129 |
except Exception as e:
|
| 130 |
st.error(f"Fehler: {str(e)}")
|