Spaces:
Sleeping
Sleeping
| # You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
| import sys | |
| import os | |
| sys.path.append('../../lutil') | |
| import openai # importing openai for API usage | |
| import chainlit as cl # importing chainlit for our app | |
| from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
| from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
| from dotenv import load_dotenv | |
| from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter | |
| from aimakerspace.vectordatabase import VectorDatabase | |
| import asyncio | |
| from raq_qa_reterieval_wandb import RetrievalAugmentedQAPipeline,raqa_prompt,user_prompt | |
| from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
| import wandb | |
| load_dotenv() | |
| openai.api_key = os.environ["OPENAI_API_KEY"] | |
| os.environ["WANDB_API_KEY"] = os.environ["WANDB_API_KEY"] | |
| # marks a function that will be executed at the start of a user session | |
| async def start_chat(): | |
| msg = cl.Message( | |
| content=f"Loading Dataset ...", disable_human_feedback=True | |
| ) | |
| await msg.send() | |
| text_loader = TextFileLoader("../../data/KingLear.txt") | |
| documents = text_loader.load_documents() | |
| text_splitter = CharacterTextSplitter() | |
| split_documents = text_splitter.split_texts(documents) | |
| vector_db = VectorDatabase() | |
| vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) | |
| chat_openai = ChatOpenAI() | |
| retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( | |
| vector_db_retriever=vector_db, | |
| llm=chat_openai, | |
| wandb_project="RAQ in pure python HF") | |
| msg.content = f"Dataset loading is done. You can now ask questions!" | |
| await msg.update() | |
| cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
| # marks a function that should be run each time the chatbot receives a message from a user | |
| async def main(message: str): | |
| # settings = cl.user_session.get("settings") | |
| chain = cl.user_session.get("chain") | |
| output = chain.run_pipeline(message) | |
| print(output) | |
| msg = cl.Message(content=f"{output}") | |
| # msg.prompt = output | |
| await msg.send() | |