File size: 63,012 Bytes
19631fe 6b93c58 19631fe ef43b8f 19631fe 9b72b46 19631fe 6b93c58 8b67cfe 19631fe faf1624 19631fe 9b72b46 6b93c58 9b72b46 faf1624 9b72b46 faf1624 9b72b46 ef43b8f 9b72b46 ef43b8f 9b72b46 cb12186 9b72b46 19631fe 0568d86 19631fe 6b93c58 19631fe ef43b8f 19631fe 6b93c58 19631fe 6b93c58 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe ef43b8f 19631fe 59b6f25 19631fe ef43b8f 19631fe ef43b8f 19631fe 8b67cfe 19631fe 8b67cfe 19631fe 6b93c58 19631fe faf1624 af72585 faf1624 914723f faf1624 19631fe 80dc139 6b93c58 80dc139 ef43b8f faf1624 ef43b8f 80dc139 19631fe 6b93c58 19631fe 6b93c58 19631fe 6b93c58 19631fe 8b67cfe 19631fe e9e8bfa 19631fe e9e8bfa 19631fe daadbe9 19631fe 5208402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Poisonous Shield for Images - Next-Generation AI Protection Technology</title>
<!-- Premium Google Fonts -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Fira+Code:wght@400;500&display=swap" rel="stylesheet">
<style>
/* Base color variables - defaults to user's system preference */
:root {
--accent-color: #2C8C84;
--accent-secondary: #A37848;
--accent-gradient: linear-gradient(135deg, #2C8C84, #3CD0C9);
--accent-hover: #3CD0C9;
--success-color: #2C8C84;
--error-color: #ff6b9d;
--warning-color: #A37848;
--premium-gold: #A37848;
--premium-silver: #2C8C84;
}
/* Dark theme (default) */
:root,
[data-theme="dark"] {
--background-color: #0B0B0B;
--primary-color: #1a1a1a;
--card-bg: rgba(27, 24, 22, 0.8);
--text-color: #e8e8f2;
--text-secondary: #a0a0c0;
--border-color: #2a2826;
--glass-effect: rgba(44, 140, 132, 0.05);
--code-bg: #1a1a1a;
/* Dark theme shadows and effects */
--shadow-premium: 0 10px 30px rgba(44, 140, 132, 0.25);
--shadow-card: 0 8px 32px rgba(0, 0, 0, 0.5);
--glow-accent: 0 0 20px rgba(44, 140, 132, 0.4);
/* Dark theme background patterns */
--bg-pattern-primary: rgba(44, 140, 132, 0.08);
--bg-pattern-secondary: rgba(60, 208, 201, 0.06);
--bg-pattern-tertiary: rgba(163, 120, 72, 0.04);
--bg-pattern-base: rgba(44, 140, 132, 0.015);
--bg-pattern-lines: rgba(44, 140, 132, 0.02);
--bg-pattern-lines-alt: rgba(163, 120, 72, 0.015);
}
/* Light theme - automatically applied when user prefers light mode */
@media (prefers-color-scheme: light) {
:root {
--background-color: #fafafa;
--primary-color: #ffffff;
--card-bg: rgba(255, 255, 255, 0.9);
--text-color: #1a1a1a;
--text-secondary: #666666;
--border-color: #e0e0e0;
--glass-effect: rgba(44, 140, 132, 0.08);
--code-bg: #f5f5f5;
/* Light theme shadows and effects */
--shadow-premium: 0 10px 30px rgba(44, 140, 132, 0.15);
--shadow-card: 0 8px 32px rgba(0, 0, 0, 0.1);
--glow-accent: 0 0 20px rgba(44, 140, 132, 0.2);
/* Light theme background patterns */
--bg-pattern-primary: rgba(44, 140, 132, 0.04);
--bg-pattern-secondary: rgba(60, 208, 201, 0.03);
--bg-pattern-tertiary: rgba(163, 120, 72, 0.02);
--bg-pattern-base: rgba(44, 140, 132, 0.008);
--bg-pattern-lines: rgba(44, 140, 132, 0.015);
--bg-pattern-lines-alt: rgba(163, 120, 72, 0.01);
}
}
/* Explicit light theme class for manual override */
[data-theme="light"] {
--background-color: #fafafa;
--primary-color: #ffffff;
--card-bg: rgba(255, 255, 255, 0.9);
--text-color: #1a1a1a;
--text-secondary: #666666;
--border-color: #e0e0e0;
--glass-effect: rgba(44, 140, 132, 0.08);
--code-bg: #f5f5f5;
--shadow-premium: 0 10px 30px rgba(44, 140, 132, 0.15);
--shadow-card: 0 8px 32px rgba(0, 0, 0, 0.1);
--glow-accent: 0 0 20px rgba(44, 140, 132, 0.2);
--bg-pattern-primary: rgba(44, 140, 132, 0.04);
--bg-pattern-secondary: rgba(60, 208, 201, 0.03);
--bg-pattern-tertiary: rgba(163, 120, 72, 0.02);
--bg-pattern-base: rgba(44, 140, 132, 0.008);
--bg-pattern-lines: rgba(44, 140, 132, 0.015);
--bg-pattern-lines-alt: rgba(163, 120, 72, 0.01);
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'Inter', 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
background: var(--background-color);
color: var(--text-color);
line-height: 1.65;
letter-spacing: 0.01em;
overflow-x: hidden;
background-image:
radial-gradient(ellipse at 15% 50%, var(--bg-pattern-primary) 0%, transparent 30%),
radial-gradient(ellipse at 85% 30%, var(--bg-pattern-secondary) 0%, transparent 35%),
radial-gradient(ellipse at 50% 80%, var(--bg-pattern-tertiary) 0%, transparent 40%),
repeating-radial-gradient(circle at 50% 50%, transparent 0%, var(--bg-pattern-base) 1%, transparent 2%);
backdrop-filter: blur(20px);
-webkit-backdrop-filter: blur(20px);
position: relative;
transition: background-color 0.3s ease, color 0.3s ease;
}
body::before {
content: '';
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-image:
linear-gradient(45deg, transparent 343%, var(--bg-pattern-lines) 49%, var(--bg-pattern-lines) 51%, transparent 52%),
linear-gradient(-45deg, transparent 343%, var(--bg-pattern-lines-alt) 49%, var(--bg-pattern-lines-alt) 51%, transparent 52%);
background-size: 100px 100px;
pointer-events: none;
z-index: 0;
opacity: 0.3;
transition: opacity 0.3s ease;
}
/* Premium scrollbar */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: var(--primary-color);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--border-color);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--accent-color);
box-shadow: var(--glow-accent);
}
.container {
margin: 0 auto;
padding: 40px;
position: relative;
z-index: 1;
}
.hero {
text-align: center;
padding: 20px 0;
margin-bottom: 10px;
}
.hero h1 {
font-size: 4em;
font-weight: 700;
background: var(--accent-gradient);
-webkit-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 30px;
letter-spacing: 0.5px;
filter: drop-shadow(0 0 15px rgba(44, 140, 132, 0.4));
}
.hero .subtitle {
font-size: 1.4em;
color: var(--text-secondary);
font-weight: 300;
max-width: 800px;
margin: 0 auto 40px auto;
line-height: 1.6;
}
.hero .hook {
background: linear-gradient(135deg, rgba(44, 140, 132, 0.2), rgba(163, 120, 72, 0.15));
padding: 40px;
border-radius: 16px;
border: 2px solid rgba(44, 140, 132, 0.4);
margin: 50px auto;
max-width: 900px;
}
.hero .hook h2 {
font-size: 1.5em;
margin-bottom: 20px;
color: var(--text-color);
}
.hero .hook p {
font-size: 1.2em;
color: var(--text-secondary);
}
.section {
background: var(--card-bg);
backdrop-filter: blur(20px);
-webkit-backdrop-filter: blur(20px);
border: 1px solid rgba(44, 140, 132, 0.2);
border-top: 2px solid var(--accent-secondary);
border-radius: 16px;
margin-bottom: 50px;
overflow: hidden;
box-shadow: var(--shadow-card), 0 0 20px rgba(44, 140, 132, 0.05);
transition: transform 0.3s ease, box-shadow 0.3s ease, background-color 0.3s ease, border-color 0.3s ease;
position: relative;
}
.section::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 1px;
background: linear-gradient(90deg, transparent, var(--accent-color), var(--accent-secondary), transparent);
opacity: 0.6;
}
.section-header {
background: linear-gradient(135deg, rgba(44, 140, 132, 0.1), rgba(163, 120, 72, 0.05));
padding: 40px 50px;
border-bottom: 1px solid rgba(44, 140, 132, 0.2);
}
.section-title {
font-size: 2.2em;
font-weight: 600;
color: var(--text-color);
margin-bottom: 15px;
position: relative;
}
.section-title::after {
content: '';
position: absolute;
bottom: -8px;
left: 0;
width: 60px;
height: 3px;
background: var(--accent-gradient);
border-radius: 2px;
}
.section-content {
padding: 50px;
}
.section-content h3 {
font-size: 1.4em;
color: var(--text-color);
margin-bottom: 20px;
font-weight: 600;
}
.section-content p {
margin-bottom: 20px;
color: var(--text-secondary);
font-size: 1.1em;
line-height: 1.7;
}
.section-content ul {
margin: 20px 0;
padding-left: 30px;
}
.section-content li {
margin-bottom: 12px;
color: var(--text-secondary);
font-size: 1.05em;
line-height: 1.6;
}
.feature-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 30px;
margin: 40px 0;
}
.feature-card {
background: rgba(44, 140, 132, 0.1);
padding: 30px;
border-radius: 12px;
border-left: 4px solid var(--accent-color);
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.feature-card:hover {
transform: translateY(-5px);
box-shadow: var(--shadow-premium);
}
.feature-card h4 {
font-size: 1.2em;
margin-bottom: 15px;
color: var(--text-color);
}
.feature-card p {
color: var(--text-secondary);
font-size: 1em;
line-height: 1.6;
}
.benchmark-highlight {
background: linear-gradient(135deg, rgba(44, 140, 132, 0.15), rgba(163, 120, 72, 0.1));
padding: 40px;
border-radius: 16px;
margin: 40px 0;
border: 2px solid rgba(44, 140, 132, 0.3);
}
.benchmark-highlight h3 {
text-align: center;
margin-bottom: 30px;
font-size: 1.8em;
background: var(--accent-gradient);
-webkit-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
}
.stats-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 30px;
margin: 30px 0;
}
.stat {
text-align: center;
padding: 20px;
background: rgba(44, 140, 132, 0.1);
border-radius: 12px;
border: 1px solid rgba(44, 140, 132, 0.2);
}
.stat-number {
font-size: 2.5em;
font-weight: 700;
color: var(--accent-color);
margin-bottom: 10px;
}
.stat-label {
font-size: 1em;
color: var(--text-secondary);
font-weight: 500;
}
.cta-section {
background: linear-gradient(135deg, rgba(44, 140, 132, 0.2), rgba(163, 120, 72, 0.15));
padding: 60px;
border-radius: 20px;
text-align: center;
border: 2px solid rgba(44, 140, 132, 0.4);
margin-top: 80px;
}
.cta-section h2 {
font-size: 2.5em;
margin-bottom: 20px;
background: var(--accent-gradient);
-webkit-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
}
.cta-section p {
font-size: 1.3em;
color: var(--text-secondary);
margin-bottom: 40px;
max-width: 700px;
margin-left: auto;
margin-right: auto;
}
.cta-buttons {
display: flex;
gap: 30px;
justify-content: center;
flex-wrap: wrap;
}
.cta-button {
padding: 18px 40px;
border-radius: 12px;
text-decoration: none;
font-weight: 600;
font-size: 1.1em;
transition: all 0.3s ease;
display: inline-block;
cursor: pointer;
border: none;
}
.cta-button.primary {
background: var(--accent-gradient);
color: #0B0B0B;
box-shadow: var(--shadow-premium);
}
.cta-button.primary:hover {
transform: translateY(-3px);
box-shadow: 0 15px 40px rgba(44, 140, 132, 0.4);
}
.cta-button.secondary {
background: rgba(44, 140, 132, 0.15);
color: var(--text-color);
border: 2px solid var(--accent-color);
}
.cta-button.secondary:hover {
background: var(--accent-color);
color: #0B0B0B;
transform: translateY(-3px);
}
.comparison-table {
width: 100%;
border-collapse: collapse;
margin: 30px 0;
background: var(--card-bg);
border-radius: 12px;
overflow: hidden;
box-shadow: var(--shadow-card);
}
.comparison-table th {
background: rgba(44, 140, 132, 0.2);
padding: 20px;
text-align: left;
color: var(--text-color);
font-weight: 600;
border-bottom: 2px solid rgba(44, 140, 132, 0.3);
}
.comparison-table td {
padding: 18px 20px;
border-bottom: 1px solid var(--border-color);
color: var(--text-secondary);
}
.comparison-table .highlight {
background: rgba(44, 140, 132, 0.1);
color: var(--text-color);
font-weight: 600;
}
.info-box {
background: rgba(44, 140, 132, 0.1);
border: 1px solid rgba(44, 140, 132, 0.3);
border-radius: 12px;
padding: 25px;
margin: 30px 0;
}
.info-box h4 {
color: var(--accent-color);
margin-bottom: 15px;
font-size: 1.2em;
}
.warning-box {
background: rgba(163, 120, 72, 0.1);
border: 1px solid rgba(163, 120, 72, 0.3);
border-radius: 12px;
padding: 25px;
margin: 30px 0;
}
.warning-box h4 {
color: var(--warning-color);
margin-bottom: 15px;
font-size: 1.2em;
}
/* Theme Toggle Button */
.theme-toggle {
position: fixed;
top: 25px;
right: 25px;
width: 50px;
height: 50px;
background: var(--glass-effect);
border: 1px solid rgba(44, 140, 132, 0.3);
border-radius: 50%;
cursor: pointer;
display: flex;
align-items: center;
justify-content: center;
transition: all 0.3s ease;
backdrop-filter: blur(10px);
-webkit-backdrop-filter: blur(10px);
font-size: 20px;
color: var(--text-color);
z-index: 1000;
box-shadow: var(--shadow-card);
}
.theme-toggle:hover {
background: rgba(44, 140, 132, 0.15);
transform: scale(1.1);
box-shadow: var(--glow-accent);
}
.theme-toggle:active {
transform: scale(0.95);
}
/* Theme toggle icons */
.theme-toggle .icon {
transition: opacity 0.3s ease, transform 0.3s ease;
position: absolute;
}
.theme-toggle .icon-light {
opacity: 0;
transform: rotate(180deg);
}
.theme-toggle .icon-dark {
opacity: 1;
transform: rotate(0deg);
}
/* Light theme icon states */
@media (prefers-color-scheme: light) {
.theme-toggle .icon-light {
opacity: 1;
transform: rotate(0deg);
}
.theme-toggle .icon-dark {
opacity: 0;
transform: rotate(-180deg);
}
}
/* Manual theme override states */
[data-theme="light"] .theme-toggle .icon-light {
opacity: 1;
transform: rotate(0deg);
}
[data-theme="light"] .theme-toggle .icon-dark {
opacity: 0;
transform: rotate(-180deg);
}
[data-theme="dark"] .theme-toggle .icon-light {
opacity: 0;
transform: rotate(180deg);
}
[data-theme="dark"] .theme-toggle .icon-dark {
opacity: 1;
transform: rotate(0deg);
}
/* Contact link hover effects */
.contact-link {
transition: all 0.3s ease !important;
}
.contact-link:hover {
background: rgba(44, 140, 132, 0.1) !important;
border-color: var(--accent-color) !important;
transform: translateY(-2px);
box-shadow: 0 4px 15px rgba(44, 140, 132, 0.2);
}
@media (max-width: 768px) {
.container {
padding: 20px;
}
.hero h1 {
font-size: 2.5em;
}
.hero .subtitle {
font-size: 1.2em;
}
.section-header {
padding: 30px 25px;
}
.section-content {
padding: 30px 25px;
}
.cta-buttons {
flex-direction: column;
align-items: center;
}
.stats-grid {
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 20px;
}
.contact-link {
margin-bottom: 15px;
width: 100%;
justify-content: center;
}
}
</style>
</head>
<body>
<!-- Theme Toggle Button -->
<button class="theme-toggle" onclick="toggleTheme()" title="Toggle light/dark theme">
<span class="icon icon-light">☀️</span>
<span class="icon icon-dark">🌙</span>
</button>
<div class="container">
<!-- Hero Section -->
<div class="hero">
<h1>Poisonous Shield for Images</h1>
<p class="subtitle">Poison shield that protects your work while disrupting unauthorized AI training</p>
</div>
<!-- Hook Section -->
<div class="section">
<div class="section-content">
<div style="background: linear-gradient(135deg, rgba(44, 140, 132, 0.2), rgba(163, 120, 72, 0.15)); padding: 30px; border-radius: 12px; border: 2px solid rgba(44, 140, 132, 0.4); margin-bottom: 30px;">
<p style="font-size: 1.25em; line-height: 1.7; margin: 0; text-align: center;">
<strong>What if you could poison your images to disrupt AI training while keeping them visually appealing to humans?</strong>
</p>
<p style="font-size: 1.1em; line-height: 1.6; margin: 20px 0 0 0; text-align: center; color: var(--text-secondary);">
Poisonous Shield for Images achieves <strong>3.4x training convergence degradation</strong> (343% slower convergence) — among the highest reported for low-distortion image protection — while maintaining excellent visual quality (SSIM 0.98+ at strength 1.5). Frequency-domain protection embedded in image structure survives common transforms and resists casual removal attempts.
</p>
</div>
</div>
</div>
<div class="section">
<div class="section-header">
<h2 class="section-title">What Makes Poisonous Shield for Images Different</h2>
</div>
<div class="section-content">
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>🎯 Frequency-Domain Targeting</h4>
<p>Protection embedded in the mathematical structure of images, targeting the frequencies (0.10-0.40 normalized radius) that ML models rely on for training. Disrupts neural network convergence while maintaining visual quality.</p>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>🔐 Cryptographic Provenance</h4>
<p>Every protected image receives a comprehensive metadata stamp containing creator identity, SHA-256 hashes of original and protected versions, timestamps, AI training prohibition notices, and protection performance metrics. This creates an immutable record for legal verification and tamper detection.</p>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>🛡️ Transform-Resistant</h4>
<p>Not a surface watermark—protection is woven into the frequency-domain structure. Survives JPEG compression (Q75-95), resizing (0.75x-1.25x), blur, and format conversion with 57-71% armor retention across transforms.</p>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>👁️ Minimal Visual Impact</h4>
<p>At optimal settings (strength 3.0), visual quality remains excellent (SSIM 0.85+) while ML disruption stays effective (20-343%).</p>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>🤖 ML Training Poisoning</h4>
<p>Disrupts neural network training itself—not just feature extraction. Achieves 343% training degradation, among the highest for low-distortion attacks.</p>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 8px; border-left: 3px solid var(--accent-color);">
<h4>⚙️ Adjustable Protection</h4>
<p>Fine-tune the strength-quality trade-off based on your needs: subtle for sharing, aggressive for legal protection.</p>
</div>
</div>
<h3 style="margin-top: 50px; margin-bottom: 20px; font-size: 1.8em;">How We Compare to Other Methods</h3>
<table class="comparison-table">
<thead>
<tr>
<th>Method</th>
<th>Primary Goal</th>
<th>Mechanism</th>
<th>Key Differentiator</th>
</tr>
</thead>
<tbody>
<tr>
<td class="highlight"><strong>Poisonous Shield for Images</strong></td>
<td class="highlight">Disrupt ML training convergence; make training economically unviable.</td>
<td class="highlight">Targets frequencies to fundamentally disrupt feature extraction and gradient learning. Combines this with cryptographic provenance.</td>
<td class="highlight"><strong>Targets the training process itself, not just the output. Verifiable via cryptographic metadata.</strong></td>
</tr>
<tr>
<td><strong>Glaze</strong></td>
<td>Prevent style mimicry by AI models.</td>
<td>Adds perturbations that mislead models about an artist's specific style, making it difficult to replicate.</td>
<td>Defensive tool focused on protecting artistic style.</td>
</tr>
<tr>
<td><strong>Nightshade</strong></td>
<td>"Poison" the model's understanding of concepts.</td>
<td>A data poisoning attack that manipulates training data to teach the model incorrect associations (e.g., "dogs" are "cats").</td>
<td>Offensive tool that corrupts specific concepts within the model.</td>
</tr>
<tr>
<td><strong>Metadata/Watermarking</strong></td>
<td>Add copyright info or visible marks.</td>
<td>Embeds text in file metadata (EXIF) or places a visible/invisible overlay on the image.</td>
<td>Easily stripped by social media platforms and basic image editing. Offers no protection against training.</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section">
<div class="section-header">
<h2 class="section-title">The Problem</h2>
</div>
<div class="section-content">
<p>Creative work is being scraped and used to train AI models without consent. Traditional watermarks are easily removed (70-95% success rate). Metadata is stripped in seconds. Legal protection is unenforceable at scale.</p>
<p><strong>Poisonous Shield for Images is different:</strong> Mathematical protection embedded in the frequency-domain structure of images—subtle to humans, toxic to AI models.</p>
<div class="info-box" style="margin-top: 20px;">
<h4>🧪 Live Demonstration: Test It Yourself</h4>
<p><strong>Download this protected image and test it against real watermark removal tools:</strong></p>
<div style="background: rgba(0, 0, 0, 0.3); padding: 20px; border-radius: 8px; margin: 15px 0;">
<img src="assets/armored_park_strength_6-2.png" alt="Protected Park Image - Strength 6.2" style="width: 100%; max-width: 500px; border-radius: 8px; margin-bottom: 15px; display: block; margin-left: auto; margin-right: auto; border: 2px solid rgba(44, 140, 132, 0.5);">
<div style="text-align: center;">
<a href="assets/armored_park_strength_6-2.png" download="image_poison_shield_test.png"
style="display: inline-block; background: var(--accent-gradient); color: white; padding: 12px 24px; border-radius: 8px; text-decoration: none; font-weight: 600; margin: 10px 10px; box-shadow: var(--shadow-premium);">
⬇️ Download Test Image
</a>
<a href="https://huggingface.co/spaces/abdul9999/NoWatermark" target="_blank"
style="display: inline-block; background: rgba(163, 120, 72, 0.8); color: white; padding: 12px 24px; border-radius: 8px; text-decoration: none; font-weight: 600; margin: 10px 10px; box-shadow: var(--shadow-premium);">
🔧 Try Watermark Remover →
</a>
</div>
<p style="margin-top: 15px; font-size: 0.95em; text-align: center; color: var(--text-secondary);">
<strong>Test:</strong> Park scene, Strength 6.2 (91% mid-band concentration, 3.4x training slowdown)<br>
Traditional watermark removers will fail to strip the protection.
</p>
</div>
<p style="margin-top: 12px; font-size: 0.9em; font-style: italic;">
<strong>Why it works:</strong> Traditional watermark removers detect surface patterns. Poisonous Shield for Images embeds protection in the frequency-domain structure—it appears as natural image content.
</p>
</div>
</div>
</div>
<!-- Benchmark Results -->
<div class="section">
<div class="section-header">
<h2 class="section-title">Validated Performance</h2>
</div>
<div class="section-content">
<p>Independent academic-grade benchmark testing confirms Poisonous Shield for Images's effectiveness at disrupting ML training while maintaining excellent visual quality.</p>
<h3>Enhanced Academic Benchmark Results</h3>
<img src="assets/benchmark_summary.png" alt="Comprehensive Benchmark Dashboard" style="width: 100%; border-radius: 12px; margin: 20px 0; border: 2px solid rgba(44, 140, 132, 0.3);">
<div style="background: rgba(44, 140, 132, 0.15); padding: 20px; border-radius: 8px; margin: 20px 0; border-left: 4px solid var(--accent-color);">
<h4 style="margin-bottom: 15px;">Key Results (Park Scene, Strength 6.2):</h4>
<ul style="line-height: 1.8;">
<li><strong>✅ Frequency Targeting:</strong> 91.2% mid-band energy concentration (target: ≥70%) — optimal ML disruption zone</li>
<li><strong>✅ ML Training Disruption:</strong> 3.4x training convergence degradation (343% slower) — top-tier performance for low-distortion attacks</li>
<li><strong>✅ Multi-Layer Feature Degradation:</strong> 20.1% average across ResNet50 layers (peak: 32.9% at layer 3)</li>
<li><strong>✅ Robustness:</strong> 71.4% survival rate through JPEG compression, resizing, and blur transforms (5/7 tests passed)</li>
<li><strong>⚠️ Perceptual Quality:</strong> SSIM 0.739 at strength 6.2 (visible artifacts) — optimal balance at strength 1.5-3.0</li>
</ul>
</div>
<div style="background: rgba(163, 120, 72, 0.1); padding: 20px; border-radius: 8px; margin: 20px 0;">
<h4>3.4x Training Convergence Degradation: How It Compares</h4>
<p>Published research on adversarial training disruption shows:</p>
<ul style="line-height: 1.8;">
<li><strong>Typical low-distortion attacks:</strong> 1.5-2.0x convergence slowdown</li>
<li><strong>Moderate perturbation methods:</strong> 2.0-2.5x typical range</li>
<li><strong>Poisonous Shield for Images (3.4x at strength 6.2):</strong> Top-tier effectiveness with 20% feature degradation and 91% mid-band concentration</li>
<li><strong>Poisonous Shield for Images (2.0x at strength 1.5):</strong> Excellent balance with minimal distortion (SSIM 0.985) and 81% mid-band targeting</li>
<li><strong>Visible patch attacks:</strong> 5-10x slowdown (but easily detected and removed)</li>
</ul>
<p style="margin-top: 15px;"><strong>Context:</strong> Achieving 3.4x training disruption with frequency-domain targeting places Poisonous Shield for Images among the most effective imperceptible protection systems. At strength 1.5, it achieves 2x disruption while remaining virtually invisible (SSIM 0.985).</p>
</div>
<h3>Protection Strength Comparison</h3>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<thead>
<tr style="background: rgba(44, 140, 132, 0.2);">
<th style="padding: 12px; text-align: left; border: 1px solid var(--border-color);">Strength</th>
<th style="padding: 12px; text-align: center; border: 1px solid var(--border-color);">Visual Quality (SSIM)</th>
<th style="padding: 12px; text-align: center; border: 1px solid var(--border-color);">ML Disruption</th>
<th style="padding: 12px; text-align: center; border: 1px solid var(--border-color);">Use Case</th>
</tr>
</thead>
<tbody>
<tr style="background: rgba(44, 140, 132, 0.05);">
<td style="padding: 12px; border: 1px solid var(--border-color);"><strong>1.5 (Recommended)</strong></td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); color: var(--success-color);">0.985 ✅</td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); font-weight: bold; color: var(--success-color);">2.0x training slowdown<br>81% mid-band<br>57% robustness</td>
<td style="padding: 12px; border: 1px solid var(--border-color);"><strong>Optimal balance</strong> — virtually invisible protection with strong ML disruption</td>
</tr>
<tr>
<td style="padding: 12px; border: 1px solid var(--border-color);"><strong>3.0</strong></td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); color: var(--success-color);">0.85-0.88 ✅</td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); font-weight: bold;">~2.5x training slowdown<br>~85% mid-band</td>
<td style="padding: 12px; border: 1px solid var(--border-color);">Enhanced protection — minimal visible distortion with stronger disruption</td>
</tr>
<tr style="background: rgba(163, 120, 72, 0.05);">
<td style="padding: 12px; border: 1px solid var(--border-color);"><strong>6.2</strong></td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); color: var(--warning-color);">0.739 ⚠️</td>
<td style="padding: 12px; text-align: center; border: 1px solid var(--border-color); font-weight: bold; color: var(--success-color);">3.4x training slowdown<br>91% mid-band<br>71% robustness</td>
<td style="padding: 12px; border: 1px solid var(--border-color);">Maximum protection for legal/archival purposes (visible quality trade-off)</td>
</tr>
</tbody>
</table>
<h3>Screenshot Survival Benchmark</h3>
<p>To simulate a common method of bypassing protection, we ran a rigorous benchmark on a screenshot of a protected image. The test automatically aligns the original and screenshot images, measures the surviving poison, and re-evaluates its impact on ML models, including a full fine-tuning test.</p>
<img src="assets/screenshot_visual_report_enhanced.png" alt="Screenshot Survival Benchmark Dashboard" style="width: 100%; border-radius: 12px; margin: 20px 0; border: 2px solid rgba(163, 120, 72, 0.3);">
<div style="background: rgba(163, 120, 72, 0.15); padding: 20px; border-radius: 8px; margin: 20px 0; border-left: 4px solid var(--premium-gold);">
<h4 style="margin-bottom: 15px; color: var(--premium-gold);">Key Results (Post-Screenshot):</h4>
<ul style="line-height: 1.8;">
<li><strong>✅ ML Training Disruption:</strong> <strong style="color: var(--success-color);">31.6% training degradation.</strong> The model trained on screenshot data had a 31.6% higher final loss, proving the surviving poison significantly hinders the learning process.</li>
<li><strong>✅ Frequency Survival:</strong> 61.9% of the surviving armor's energy remains in the critical mid-band, demonstrating exceptional resilience.</li>
<li><strong>✅ Perceptual Quality:</strong> SSIM of 0.822, indicating the image is still visually coherent after screenshotting.</li>
<li><strong>ML Feature Degradation:</strong> While direct feature degradation was low (~1.2%), the far more critical fine-tuning test confirmed the armor's powerful real-world impact on model training.</li>
</ul>
<p style="margin-top: 15px; font-style: italic;"><strong>Conclusion:</strong> Poisonous Shield for Images survives the screenshot process and remains highly effective at poisoning the ML training pipeline—a critical feature for real-world creative protection.</p>
</div>
<h3>Visual Examples: Natural Photography</h3>
<p style="margin-bottom: 15px;">Park scene tested at different protection strengths:</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(44, 140, 132, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(44, 140, 132, 0.3);">
<img src="assets/armored_park_strength_1-5.png" alt="Park - Strength 1.5" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0; color: var(--success-color);">Strength 1.5 ✅ (Recommended)</h4>
<p style="font-size: 0.9em; margin: 5px 0;">SSIM: 0.985 | Mid-band: 81% | <strong style="color: var(--success-color);">Training Slowdown: 2.0x</strong></p>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Virtually invisible with strong ML disruption. Ideal for social media, portfolios, and public sharing.</p>
</div>
<div style="background: rgba(163, 120, 72, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(163, 120, 72, 0.3);">
<img src="assets/armored_park_strength_6-2.png" alt="Park - Strength 6.2" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0; color: var(--warning-color);">Strength 6.2 ⚠️</h4>
<p style="font-size: 0.9em; margin: 5px 0;">SSIM: 0.739 | Mid-band: 91% | <strong style="color: var(--success-color);">Training Slowdown: 3.4x</strong></p>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Maximum ML disruption (343% slower training) with visible quality trade-off. Best for archival protection and legal evidence.</p>
</div>
</div>
<h3>AI Generative Model Tests</h3>
<p style="margin-bottom: 15px;">When AI generators attempt to recreate protected images, the shield causes visible artifacts:</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(163, 120, 72, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(163, 120, 72, 0.3);">
<img src="assets/Generated_NB-Image_park_strength_1-5.png" alt="AI Reconstruction Failed - Park 1.5" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0;">Park (Strength 1.5) → AI Reconstruction</h4>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Line artifacts and streaking patterns show AI disruption despite minimal visual changes to original.</p>
</div>
<div style="background: rgba(163, 120, 72, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(163, 120, 72, 0.3);">
<img src="assets/Generated_NB-Image_park_strength_6-2.png" alt="AI Reconstruction Failed - Park 6.2" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0;">Park (Strength 6.2) → AI Reconstruction</h4>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Severe artifacts and noise demonstrate maximum ML training disruption.</p>
</div>
</div>
<h3>Visual Examples: AI-Generated Content</h3>
<p style="margin-bottom: 15px;">Digital artwork (walking scene) shows different frequency characteristics but still disrupts AI models:</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(44, 140, 132, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(44, 140, 132, 0.3);">
<img src="assets/armored_walking_strength_1-5.png" alt="Walking - Strength 1.5" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0; color: var(--success-color);">Strength 1.5 ✅</h4>
<p style="font-size: 0.9em; margin: 5px 0;">SSIM: 0.995 | Mid-band: 35% (high-band dominant)</p>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Excellent visual quality. AI-generated content has different frequency profile but still disrupts models.</p>
</div>
<div style="background: rgba(44, 140, 132, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(44, 140, 132, 0.3);">
<img src="assets/armored_walking_strength_6-2.png" alt="Walking - Strength 6.2" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0;">Strength 6.2</h4>
<p style="font-size: 0.9em; margin: 5px 0;">SSIM: 0.827 | Mid-band: 65% | <strong style="color: var(--success-color);">Robustness: 77%</strong></p>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Higher strength achieves best robustness across all tests (77% survival through aggressive transforms).</p>
</div>
</div>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(163, 120, 72, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(163, 120, 72, 0.3);">
<img src="assets/Generated_NB-Image_walking_strength_1-5.png" alt="AI Reconstruction Failed - Walking 1.5" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0;">Walking (Strength 1.5) → AI Reconstruction</h4>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Severe distortions: diagonal artifacts, color aberrations, structural errors throughout.</p>
</div>
<div style="background: rgba(163, 120, 72, 0.05); padding: 15px; border-radius: 8px; border: 2px solid rgba(163, 120, 72, 0.3);">
<img src="assets/Generated_NB-Image_walking_strength_6-2.png" alt="AI Reconstruction Failed - Walking 6.2" style="width: 100%; border-radius: 8px; margin-bottom: 10px;">
<h4 style="margin: 10px 0 5px 0;">Walking (Strength 6.2) → AI Reconstruction</h4>
<p style="font-size: 0.85em; color: var(--text-secondary); margin-top: 8px;">Consistent severe artifacts confirm mid-band concentration is the primary driver of AI disruption.</p>
</div>
</div>
<h3>Watermark Removal Resistance</h3>
<p>Protected images tested against commercial AI-powered watermark removal tools:</p>
<div style="background: rgba(44, 140, 132, 0.15); padding: 20px; border-radius: 8px; margin: 20px 0; text-align: center;">
<h4 style="font-size: 2em; margin: 0; color: var(--success-color);">100% Shield Preservation</h4>
<p style="margin-top: 10px; font-size: 1.1em;">0 out of 4 test images had protection removed</p>
<p style="margin-top: 15px; font-style: italic; color: var(--text-secondary);">Traditional watermark removers detect surface patterns. Poisonous Shield for Images embeds protection in the frequency-domain structure—it appears as natural image content.</p>
</div>
<div class="warning-box" style="margin-top: 40px;">
<h4>⚠️ Honest Assessment: The Goal is Economic Disruption, Not Perfect Unbreakability</h4>
<p>Recent research (LightShed, USENIX 2025) demonstrated autoencoder-based attacks that can learn to remove protection patterns when trained on large, paired clean/armored image datasets. <strong>When an attacker has access to both original and protected versions of many images, protection algorithms like Nightshade, Glaze, Metacheck, Poisonous Shield for Images, etc can be removed. No current solution exists that is able to overcome this autoencoder approach unfortunately.</strong></p>
<p style="margin-top: 12px;"><strong>The Economic Hurdle Strategy:</strong> The primary goal of Poisonous Shield for Images is to make unauthorized AI training prohibitively expensive and time-consuming. We achieve this in two ways:</p>
<ul style="margin: 15px 0 15px 20px; line-height: 1.7;">
<li><strong>Cost of Removal:</strong> To train a removal model, attackers must acquire thousands of paired (clean, protected) images. This forces them to either license/purchase original content from creators or use our service to generate armored versions—both creating significant financial and logistical barriers.</li>
<li><strong>Cost of Training:</strong> If attackers choose to train on poisoned images, the <strong>2-3.4x training degradation</strong> means they must spend significantly more on compute resources (time and money) to achieve their desired results. This directly impacts their bottom line.</li>
</ul>
<p style="margin-top: 12px;"><strong>Primary Value:</strong> The core strength of Poisonous Shield for Images lies in creating a powerful economic disincentive against unauthorized data scraping, forcing model creators to either pay for clean data or pay more for training on poisoned data. It is not designed to be an unbreakable shield against a determined adversary with unlimited resources and paired training data.</p>
<p style="margin-top: 15px; font-style: italic; color: var(--text-secondary);"><strong>Future Direction:</strong> Active research is underway to counter this autoencoder vulnerability. We are confident that this is a solvable problem and are committed to developing next-generation defenses that enhance removal resistance without compromising visual quality.</p>
</div>
</div>
</div>
<!-- Dual-Layer Protection Section -->
<div class="section">
<div class="section-header">
<h2 class="section-title">Dual-Layer Protection: Poison + Provenance</h2>
</div>
<div class="section-content">
<p style="font-size: 1.15em; line-height: 1.7; margin-bottom: 25px; color: var(--text-secondary);">
Poisonous Shield for Images doesn't just disrupt AI training—it creates an immutable record of creator rights and image authenticity.
</p>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 30px; margin: 30px 0;">
<div style="background: linear-gradient(135deg, rgba(44, 140, 132, 0.15), rgba(163, 120, 72, 0.1)); padding: 25px; border-radius: 12px; border: 2px solid rgba(44, 140, 132, 0.3);">
<h3 style="color: var(--accent-color); margin-bottom: 15px;">⚡ Layer 1: AI Poisoning</h3>
<ul style="line-height: 1.6; margin: 0; padding-left: 20px;">
<li>2-3.4x ML training slowdown</li>
<li>Frequency-domain protection (81-91% mid-band concentration)</li>
<li>Transform-resistant (57-71% survival through JPEG/resize/blur)</li>
<li>Content-aware perceptual masking</li>
<li>Cryptographically-keyed deterministic generation</li>
<li>Maintains visual quality (SSIM 0.74-0.99)</li>
</ul>
</div>
<div style="background: linear-gradient(135deg, rgba(163, 120, 72, 0.15), rgba(44, 140, 132, 0.1)); padding: 25px; border-radius: 12px; border: 2px solid rgba(163, 120, 72, 0.3);">
<h3 style="color: var(--secondary-accent); margin-bottom: 15px;">🔏 Layer 2: Cryptographic Proof</h3>
<ul style="line-height: 1.6; margin: 0; padding-left: 20px;">
<li>Creator identity verification</li>
<li>SHA-256 tamper detection</li>
<li>Timestamped provenance</li>
<li>AI training prohibition notice</li>
</ul>
</div>
</div>
<div style="background: rgba(44, 140, 132, 0.05); padding: 20px; border-radius: 8px; margin: 25px 0; border-left: 4px solid var(--accent-color);">
<h4 style="margin-bottom: 15px; color: var(--accent-color);">📋 Metadata Stamp Example</h4>
<p style="margin-bottom: 10px; font-style: italic;">Every protected image contains comprehensive metadata:</p>
<ul style="line-height: 1.6; color: var(--text-secondary);">
<li><strong>Creator:</strong> Verified identity and timestamp</li>
<li><strong>Protection Config:</strong> Strength, focus, and strategy parameters</li>
<li><strong>Hash Verification:</strong> Original and protected SHA-256 checksums</li>
<li><strong>Legal Notice:</strong> "AI TRAINING PROHIBITED" disclaimer</li>
<li><strong>Performance Metrics:</strong> SSIM quality and toxicity measurements</li>
</ul>
</div>
</div>
</div>
<div class="section">
<div class="section-header">
<h2 class="section-title">Get Involved</h2>
</div>
<div class="section-content">
<h3>Seeking Partners & Backing</h3>
<p style="margin-bottom: 20px;">Poisonous Shield for Images has proven its effectiveness through rigorous validation. We're now seeking partners, funding, and strategic collaborators to scale this technology and combat AI content theft at an enterprise level.</p>
<div style="background: linear-gradient(135deg, rgba(44, 140, 132, 0.15), rgba(163, 120, 72, 0.1)); padding: 25px; border-radius: 12px; border-left: 4px solid var(--accent-color); margin: 25px 0;">
<h4 style="color: var(--accent-color); margin-bottom: 15px;">We're Looking For:</h4>
<h5 style="color: var(--text-color); margin-top: 20px; margin-bottom: 10px;">🏢 Enterprise Organizations</h5>
<p style="color: var(--text-secondary); margin-bottom: 15px;">Companies seeking robust solutions to combat AI theft of proprietary content, training data, or creative assets. Adobe, Getty, Shutterstock, and similar platforms actively evaluating protection technologies.</p>
<h5 style="color: var(--text-color); margin-top: 20px; margin-bottom: 10px;">💰 Funding Partners</h5>
<p style="color: var(--text-secondary); margin-bottom: 15px;">Investment to scale the core algorithms and expand protection capabilities beyond static images to video, audio, 3D models, and other media types. Funding supports algorithm R&D, enterprise API development, and team growth.</p>
<h5 style="color: var(--text-color); margin-top: 20px; margin-bottom: 10px;">🔬 Research Collaborators</h5>
<p style="color: var(--text-secondary); margin-bottom: 15px;">Academic institutions and AI ethics researchers studying digital rights, adversarial ML, and content protection. We're open to collaborative research and joint publication opportunities.</p>
<h5 style="color: var(--text-color); margin-top: 20px; margin-bottom: 10px;">🛠️ Integration Partners</h5>
<p style="color: var(--text-secondary); margin-bottom: 15px;">Platform providers, creative tools, DAM systems, and content management solutions seeking to embed Poisonous Shield for Images protection. We're building an enterprise-grade API for seamless integration.</p>
</div>
<h3>Expansion Roadmap</h3>
<p style="margin-bottom: 15px;">With proper backing, Poisonous Shield for Images can expand beyond images:</p>
<ul style="line-height: 1.8; margin-bottom: 25px;">
<li><strong>Video Protection:</strong> Frame-coherent shield for film, TV, and social media</li>
<li><strong>Audio Protection:</strong> Frequency-domain poisoning for music and podcasts</li>
<li><strong>3D Assets:</strong> Protection for models, textures, and virtual environments</li>
<li><strong>Document Protection:</strong> Text-based content for articles, books, and code</li>
<li><strong>Enterprise API:</strong> Production-grade REST API with batch processing and analytics</li>
<li><strong>SaaS Platform:</strong> Web application with team management and usage tracking</li>
</ul>
<h3>Contact</h3>
<div style="display: flex; gap: 20px; justify-content: center; flex-wrap: wrap; margin: 30px 0;">
<a href="mailto:interwovenarkitech@gmail.com?subject=Image%20Poison%20Shield%20Partnership%20Discussion" class="contact-link"
style="color: var(--accent-color); text-decoration: none; font-weight: 600; display: flex; align-items: center; gap: 8px; padding: 15px 25px; border: 2px solid rgba(44, 140, 132, 0.3); border-radius: 8px; background: var(--accent-gradient); color: white;">
📧 Partnership Discussion
</a>
<a href="mailto:interwovenarkitech@gmail.com?subject=Image%20Poison%20Shield%20Licensing%20Inquiry" class="contact-link"
style="color: var(--accent-color); text-decoration: none; font-weight: 600; display: flex; align-items: center; gap: 8px; padding: 15px 25px; border: 2px solid rgba(44, 140, 132, 0.3); border-radius: 8px;">
💼 Licensing Inquiries
</a>
</div>
<div style="margin-top: 30px; padding-top: 30px; border-top: 1px solid rgba(44, 140, 132, 0.3); text-align: center;">
<h4 style="color: var(--text-color); margin-bottom: 20px; font-size: 1.2em;">Connect With the Creator</h4>
<div style="display: flex; gap: 20px; justify-content: center; flex-wrap: wrap; align-items: center;">
<a href="https://www.interwoven-arkitech.com" target="_blank" class="contact-link"
style="color: var(--accent-color); text-decoration: none; font-weight: 600; display: flex; align-items: center; gap: 8px; padding: 10px 20px; border: 2px solid rgba(44, 140, 132, 0.3); border-radius: 8px;">
🌐 Interwoven Arkitech
</a>
<a href="https://www.linkedin.com/in/beckettdillon/" target="_blank" class="contact-link"
style="color: var(--accent-color); text-decoration: none; font-weight: 600; display: flex; align-items: center; gap: 8px; padding: 10px 20px; border: 2px solid rgba(44, 140, 132, 0.3); border-radius: 8px;">
💼 LinkedIn Profile
</a>
<a href="mailto:beckettdillon42@gmail.com" class="contact-link"
style="color: var(--accent-color); text-decoration: none; font-weight: 600; display: flex; align-items: center; gap: 8px; padding: 10px 20px; border: 2px solid rgba(44, 140, 132, 0.3); border-radius: 8px;">
📧 Direct Contact
</a>
</div>
</div>
<div style="background: rgba(44, 140, 132, 0.1); padding: 20px; border-radius: 12px; margin-top: 25px; border: 2px solid rgba(44, 140, 132, 0.3);">
<p style="font-size: 1.1em; line-height: 1.7; margin: 0; text-align: center;"><strong>Current Stage:</strong> Proven technology with validated results (2-3.4x ML training slowdown, 81-91% mid-band concentration, 100% casual watermark removal resistance, 57-71% robustness across transforms). <strong>Limitation:</strong> Vulnerable to sophisticated autoencoder removal when attackers possess paired training data. Seeking inital seed funding and enterprise partnerships to scale from prototype to production-grade platform and explore advanced defenses.</p>
</div>
</div>
</div>
</div>
<script>
// Theme Management
function initializeTheme() {
// Check for saved theme preference or fall back to system preference
const savedTheme = localStorage.getItem('image-poison-shield-theme');
if (savedTheme) {
document.documentElement.setAttribute('data-theme', savedTheme);
}
// If no saved preference, let CSS media queries handle it automatically
}
function toggleTheme() {
const currentTheme = document.documentElement.getAttribute('data-theme');
const systemPrefersDark = window.matchMedia('(prefers-color-scheme: dark)').matches;
let newTheme;
if (currentTheme === 'light') {
newTheme = 'dark';
} else if (currentTheme === 'dark') {
newTheme = 'light';
} else {
// No manual theme set, toggle opposite of system preference
newTheme = systemPrefersDark ? 'light' : 'dark';
}
document.documentElement.setAttribute('data-theme', newTheme);
localStorage.setItem('image-poison-shield-theme', newTheme);
// Add a subtle animation effect
document.body.style.transition = 'background-color 0.3s ease, color 0.3s ease';
setTimeout(() => {
document.body.style.transition = '';
}, 300);
}
// Listen for system theme changes and update if no manual override
window.matchMedia('(prefers-color-scheme: dark)').addEventListener('change', (e) => {
const manualTheme = localStorage.getItem('image-poison-shield-theme');
if (!manualTheme) {
// No manual override, let the system preference take effect
document.documentElement.removeAttribute('data-theme');
}
});
// Initialize theme on page load
document.addEventListener('DOMContentLoaded', initializeTheme);
</script>
</body>
</html>
|