| import os | |
| from collections.abc import Generator | |
| import pytest | |
| from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta | |
| from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage | |
| from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
| from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel | |
| def test_validate_credentials(): | |
| model = BedrockLargeLanguageModel() | |
| with pytest.raises(CredentialsValidateFailedError): | |
| model.validate_credentials(model="meta.llama2-13b-chat-v1", credentials={"anthropic_api_key": "invalid_key"}) | |
| model.validate_credentials( | |
| model="meta.llama2-13b-chat-v1", | |
| credentials={ | |
| "aws_region": os.getenv("AWS_REGION"), | |
| "aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
| "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
| }, | |
| ) | |
| def test_invoke_model(): | |
| model = BedrockLargeLanguageModel() | |
| response = model.invoke( | |
| model="meta.llama2-13b-chat-v1", | |
| credentials={ | |
| "aws_region": os.getenv("AWS_REGION"), | |
| "aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
| "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
| }, | |
| prompt_messages=[ | |
| SystemPromptMessage( | |
| content="You are a helpful AI assistant.", | |
| ), | |
| UserPromptMessage(content="Hello World!"), | |
| ], | |
| model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens_to_sample": 10}, | |
| stop=["How"], | |
| stream=False, | |
| user="abc-123", | |
| ) | |
| assert isinstance(response, LLMResult) | |
| assert len(response.message.content) > 0 | |
| def test_invoke_stream_model(): | |
| model = BedrockLargeLanguageModel() | |
| response = model.invoke( | |
| model="meta.llama2-13b-chat-v1", | |
| credentials={ | |
| "aws_region": os.getenv("AWS_REGION"), | |
| "aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
| "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
| }, | |
| prompt_messages=[ | |
| SystemPromptMessage( | |
| content="You are a helpful AI assistant.", | |
| ), | |
| UserPromptMessage(content="Hello World!"), | |
| ], | |
| model_parameters={"temperature": 0.0, "max_tokens_to_sample": 100}, | |
| stream=True, | |
| user="abc-123", | |
| ) | |
| assert isinstance(response, Generator) | |
| for chunk in response: | |
| print(chunk) | |
| assert isinstance(chunk, LLMResultChunk) | |
| assert isinstance(chunk.delta, LLMResultChunkDelta) | |
| assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
| assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
| def test_get_num_tokens(): | |
| model = BedrockLargeLanguageModel() | |
| num_tokens = model.get_num_tokens( | |
| model="meta.llama2-13b-chat-v1", | |
| credentials={ | |
| "aws_region": os.getenv("AWS_REGION"), | |
| "aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
| "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
| }, | |
| messages=[ | |
| SystemPromptMessage( | |
| content="You are a helpful AI assistant.", | |
| ), | |
| UserPromptMessage(content="Hello World!"), | |
| ], | |
| ) | |
| assert num_tokens == 18 | |