| import os | |
| import dashscope | |
| import pytest | |
| from core.model_runtime.entities.rerank_entities import RerankResult | |
| from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
| from core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModel | |
| def test_validate_credentials(): | |
| model = GTERerankModel() | |
| with pytest.raises(CredentialsValidateFailedError): | |
| model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"}) | |
| model.validate_credentials( | |
| model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")} | |
| ) | |
| def test_invoke_model(): | |
| model = GTERerankModel() | |
| result = model.invoke( | |
| model=dashscope.TextReRank.Models.gte_rerank, | |
| credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}, | |
| query="什么是文本排序模型", | |
| docs=[ | |
| "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序", | |
| "量子计算是计算科学的一个前沿领域", | |
| "预训练语言模型的发展给文本排序模型带来了新的进展", | |
| ], | |
| score_threshold=0.7, | |
| ) | |
| assert isinstance(result, RerankResult) | |
| assert len(result.docs) == 1 | |
| assert result.docs[0].index == 0 | |
| assert result.docs[0].score >= 0.7 | |