Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| from transformers import SeamlessM4Tv2Model, AutoProcessor | |
| from lang_list import ( | |
| ASR_TARGET_LANGUAGE_NAMES, | |
| LANGUAGE_NAME_TO_CODE, | |
| S2ST_TARGET_LANGUAGE_NAMES, | |
| S2TT_TARGET_LANGUAGE_NAMES, | |
| T2ST_TARGET_LANGUAGE_NAMES, | |
| T2TT_TARGET_LANGUAGE_NAMES, | |
| TEXT_SOURCE_LANGUAGE_NAMES, | |
| ) | |
| processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
| model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
| AUDIO_SAMPLE_RATE = 16000.0 | |
| MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
| DEFAULT_TARGET_LANGUAGE = "French" | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda:0") | |
| dtype = torch.float16 | |
| else: | |
| device = torch.device("cpu") | |
| dtype = torch.float32 | |
| def preprocess_audio(input_audio: str) -> None: | |
| arr, org_sr = torchaudio.load(input_audio) | |
| new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
| max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
| if new_arr.shape[1] > max_length: | |
| new_arr = new_arr[:, :max_length] | |
| gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
| torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
| def run_s2st( | |
| input_audio: str, source_language: str, target_language: str | |
| ) -> tuple[tuple[int, np.ndarray] | None, str]: | |
| preprocess_audio(input_audio) | |
| source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
| target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
| arr, org_sr = torchaudio.load(input_audio) | |
| audio_inputs = processor(audios=arr, return_tensors="pt", | |
| sampling_rate=model.config.sampling_rate).to(device) | |
| output = model.generate(**audio_inputs, return_intermediate_token_ids=True, | |
| tgt_lang=target_language_code,) | |
| audio_array_from_audio = output[0].cpu().numpy().squeeze() | |
| text_tokens = output[2] | |
| translated_text_from_text = processor.decode(text_tokens.tolist()[0], skip_special_tokens=True) | |
| return (int(AUDIO_SAMPLE_RATE), audio_array_from_audio), translated_text_from_text | |
| description = """ | |
| # Direct Speech to Speech Translation | |
| This demo uses SeamlessM4T V2 to translate one speech directly into another. | |
| The model being used here is [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/seamless-m4t-v2-large). | |
| SeamlessM4T V2 is unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) translation and more, without relying on multiple separate models. | |
| """ | |
| with gr.Blocks() as demo_s2st: | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| input_audio = gr.Audio(label="Input speech", type="filepath") | |
| source_language = gr.Dropdown( | |
| label="Source language", | |
| choices=ASR_TARGET_LANGUAGE_NAMES, | |
| value="English", | |
| ) | |
| target_language = gr.Dropdown( | |
| label="Target language", | |
| choices=S2ST_TARGET_LANGUAGE_NAMES, | |
| value=DEFAULT_TARGET_LANGUAGE, | |
| ) | |
| btn = gr.Button("Translate") | |
| with gr.Column(): | |
| with gr.Group(): | |
| output_audio = gr.Audio( | |
| label="Translated speech", | |
| autoplay=False, | |
| streaming=False, | |
| type="numpy", | |
| ) | |
| output_text = gr.Textbox(label="Translated text") | |
| gr.Examples( | |
| examples=[ | |
| ["assets/sample_input.mp3", "English", "French"], | |
| ["assets/sample_input.mp3", "English", "Mandarin Chinese"], | |
| ["assets/sample_input_2.mp3", "English", "Hindi"], | |
| ["assets/sample_input_2.mp3", "English", "Spanish"], | |
| ], | |
| inputs=[input_audio, source_language, target_language], | |
| outputs=[output_audio, output_text], | |
| fn=run_s2st, | |
| cache_examples=True, | |
| ) | |
| btn.click( | |
| fn=run_s2st, | |
| inputs=[input_audio, source_language, target_language], | |
| outputs=[output_audio, output_text], | |
| ) | |
| demo_s2st.launch() |