Update src/streamlit_app.py
Browse files- src/streamlit_app.py +229 -34
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
-
import streamlit as st
|
| 4 |
import joblib
|
| 5 |
from apify_client import ApifyClient
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
st.
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
st.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Optional, Dict, Any, Tuple
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
+
import streamlit as st
|
| 9 |
import joblib
|
| 10 |
from apify_client import ApifyClient
|
| 11 |
+
|
| 12 |
+
# ---------- Page setup ----------
|
| 13 |
+
st.set_page_config(
|
| 14 |
+
page_title="Fake Instagram Profile Detector",
|
| 15 |
+
page_icon="🕵️♂️",
|
| 16 |
+
layout="centered",
|
| 17 |
+
initial_sidebar_state="expanded",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# ---------- Minimal styling ----------
|
| 21 |
+
st.markdown("""
|
| 22 |
+
<style>
|
| 23 |
+
/* Make it feel app-like */
|
| 24 |
+
.reportview-container .main .block-container {padding-top: 2rem; padding-bottom: 2rem;}
|
| 25 |
+
.small-muted {font-size: 0.9rem; color: rgba(0,0,0,0.55);}
|
| 26 |
+
.kpi {padding: 0.75rem 1rem; border-radius: 0.75rem; border: 1px solid rgba(0,0,0,0.08);}
|
| 27 |
+
.status-pill {display:inline-block; padding: .25rem .6rem; border-radius: 999px; font-weight:600;}
|
| 28 |
+
.status-ok {background:#E7F6EC; color:#137333;}
|
| 29 |
+
.status-bad {background:#FCE8E6; color:#B3261E;}
|
| 30 |
+
.status-warn {background:#FFF4E5; color:#8A4D00;}
|
| 31 |
+
</style>
|
| 32 |
+
""", unsafe_allow_html=True)
|
| 33 |
+
|
| 34 |
+
# ---------- Config & Secrets ----------
|
| 35 |
+
def get_apify_token() -> Optional[str]:
|
| 36 |
+
# Prefer Streamlit secrets; fallback to env var; last resort None
|
| 37 |
+
token = st.secrets.get("APIFY_TOKEN", None) if hasattr(st, "secrets") else None
|
| 38 |
+
return token or os.getenv("APIFY_TOKEN") # don't hardcode into source code
|
| 39 |
+
|
| 40 |
+
APIFY_ACTOR_ID = "dSCLg0C3YEZ83HzYX" # your actor id
|
| 41 |
+
# If your actor expects a different input shape, adjust below.
|
| 42 |
+
DEFAULT_RUN_INPUT_KEY = "usernames"
|
| 43 |
+
|
| 44 |
+
# ---------- Model loading ----------
|
| 45 |
+
@st.cache_resource(show_spinner=False)
|
| 46 |
+
def load_model() -> Any:
|
| 47 |
+
# Load relative to this file to avoid CWD issues
|
| 48 |
+
here = Path(__file__).resolve().parent
|
| 49 |
+
model_path = here / "classifier.pkl" # place classifier.pkl inside src/
|
| 50 |
+
if not model_path.exists():
|
| 51 |
+
raise FileNotFoundError(f"Model not found at: {model_path}")
|
| 52 |
+
return joblib.load(model_path)
|
| 53 |
+
|
| 54 |
+
model = None
|
| 55 |
+
model_load_error = None
|
| 56 |
+
try:
|
| 57 |
+
with st.spinner("Loading model..."):
|
| 58 |
+
model = load_model()
|
| 59 |
+
except Exception as e:
|
| 60 |
+
model_load_error = str(e)
|
| 61 |
+
|
| 62 |
+
# ---------- Apify helpers ----------
|
| 63 |
+
@st.cache_data(show_spinner=False, ttl=60) # cache for a minute
|
| 64 |
+
def fetch_instagram_profile(username: str, token: str) -> Tuple[Optional[Dict[str, Any]], Optional[str]]:
|
| 65 |
+
try:
|
| 66 |
+
client = ApifyClient(token)
|
| 67 |
+
run_input = {DEFAULT_RUN_INPUT_KEY: [username]}
|
| 68 |
+
run = client.actor(APIFY_ACTOR_ID).call(run_input=run_input)
|
| 69 |
+
dataset = client.dataset(run["defaultDatasetId"])
|
| 70 |
+
|
| 71 |
+
# We'll take the first item that matches
|
| 72 |
+
for item in dataset.iterate_items():
|
| 73 |
+
# normalize keys we care about
|
| 74 |
+
out = {
|
| 75 |
+
"postsCount": item.get("postsCount"),
|
| 76 |
+
"followersCount": item.get("followersCount"),
|
| 77 |
+
"followsCount": item.get("followsCount"),
|
| 78 |
+
"private": item.get("private"),
|
| 79 |
+
"verified": item.get("verified"),
|
| 80 |
+
}
|
| 81 |
+
return out, None
|
| 82 |
+
|
| 83 |
+
return None, "No data returned for this username."
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return None, f"Apify error: {e}"
|
| 86 |
+
|
| 87 |
+
def to_numeric_features(raw: Dict[str, Any]) -> Optional[np.ndarray]:
|
| 88 |
+
try:
|
| 89 |
+
posts = int(raw.get("postsCount")) if raw.get("postsCount") is not None else None
|
| 90 |
+
followers = int(raw.get("followersCount")) if raw.get("followersCount") is not None else None
|
| 91 |
+
follows = int(raw.get("followsCount")) if raw.get("followsCount") is not None else None
|
| 92 |
+
private = 1 if bool(raw.get("private")) else 0
|
| 93 |
+
verified = 1 if bool(raw.get("verified")) else 0
|
| 94 |
+
if None in (posts, followers, follows):
|
| 95 |
+
return None
|
| 96 |
+
return np.array([[posts, followers, follows, private, verified]], dtype=np.float64)
|
| 97 |
+
except Exception:
|
| 98 |
+
return None
|
| 99 |
+
|
| 100 |
+
def predict_with_model(X: np.ndarray) -> Dict[str, Any]:
|
| 101 |
+
# Try to get probabilities if available; else binary prediction
|
| 102 |
+
result: Dict[str, Any] = {}
|
| 103 |
+
if hasattr(model, "predict_proba"):
|
| 104 |
+
proba = model.predict_proba(X)
|
| 105 |
+
# Assume class 1 = Real, class 0 = Fake (adjust if reversed in your model)
|
| 106 |
+
# Try to find mapping if model has classes_
|
| 107 |
+
label_index = getattr(model, "classes_", np.array([0, 1]))
|
| 108 |
+
# map probabilities to classes
|
| 109 |
+
probs = dict(zip(label_index.tolist(), proba[0].tolist()))
|
| 110 |
+
result["proba_real"] = probs.get(1, None)
|
| 111 |
+
result["proba_fake"] = probs.get(0, None)
|
| 112 |
+
result["pred"] = int(model.predict(X)[0])
|
| 113 |
else:
|
| 114 |
+
y = int(model.predict(X)[0])
|
| 115 |
+
result["pred"] = y
|
| 116 |
+
result["proba_real"] = None
|
| 117 |
+
result["proba_fake"] = None
|
| 118 |
+
return result
|
| 119 |
+
|
| 120 |
+
# ---------- Sidebar ----------
|
| 121 |
+
with st.sidebar:
|
| 122 |
+
st.header("⚙️ Settings")
|
| 123 |
+
st.caption("Configure how the app connects and behaves.")
|
| 124 |
+
token = get_apify_token()
|
| 125 |
+
if not token:
|
| 126 |
+
token = st.text_input("Apify API token (not saved)", type="password", placeholder="APIFY_...")
|
| 127 |
+
|
| 128 |
+
st.divider()
|
| 129 |
+
st.markdown("**About**")
|
| 130 |
+
st.write(
|
| 131 |
+
"This app checks basic Instagram profile signals "
|
| 132 |
+
"and runs a classifier to estimate whether an account looks fake or real."
|
| 133 |
+
)
|
| 134 |
+
st.markdown(
|
| 135 |
+
'<span class="small-muted">For demo/educational purposes only. '
|
| 136 |
+
'Always verify results with additional signals.</span>',
|
| 137 |
+
unsafe_allow_html=True
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# ---------- Header ----------
|
| 141 |
+
st.title("🕵️♂️ Fake Instagram Profile Detector")
|
| 142 |
+
st.write("Enter a username and we’ll fetch basic public signals, then run a trained model to estimate risk.")
|
| 143 |
+
|
| 144 |
+
if model_load_error:
|
| 145 |
+
st.error(f"Model failed to load: {model_load_error}")
|
| 146 |
+
st.stop()
|
| 147 |
+
|
| 148 |
+
# ---------- Main Form ----------
|
| 149 |
+
with st.form("username_form", clear_on_submit=False):
|
| 150 |
+
username = st.text_input("Instagram Username", placeholder="e.g., nasa")
|
| 151 |
+
submitted = st.form_submit_button("Analyze")
|
| 152 |
+
|
| 153 |
+
if not submitted:
|
| 154 |
+
st.info("Enter a username and click **Analyze** to get started.")
|
| 155 |
+
st.stop()
|
| 156 |
+
|
| 157 |
+
# ---------- Validation ----------
|
| 158 |
+
if not username.strip():
|
| 159 |
+
st.warning("Please provide a username.")
|
| 160 |
+
st.stop()
|
| 161 |
+
|
| 162 |
+
if not token:
|
| 163 |
+
st.error("Missing Apify token. Add it to `.streamlit/secrets.toml` as `APIFY_TOKEN` or set the env var.")
|
| 164 |
+
st.stop()
|
| 165 |
+
|
| 166 |
+
# ---------- Fetch & Predict ----------
|
| 167 |
+
with st.spinner("Fetching profile data..."):
|
| 168 |
+
raw_data, fetch_err = fetch_instagram_profile(username.strip(), token)
|
| 169 |
+
|
| 170 |
+
if fetch_err:
|
| 171 |
+
st.error(fetch_err)
|
| 172 |
+
st.stop()
|
| 173 |
+
if not raw_data:
|
| 174 |
+
st.warning("No data found. Double-check the username.")
|
| 175 |
+
st.stop()
|
| 176 |
+
|
| 177 |
+
# KPIs
|
| 178 |
+
st.subheader(f"Profile Signals — @{username}")
|
| 179 |
+
c1, c2, c3 = st.columns(3)
|
| 180 |
+
c4, c5 = st.columns(2)
|
| 181 |
+
|
| 182 |
+
with c1:
|
| 183 |
+
st.markdown('<div class="kpi"><div class="small-muted">Posts</div>'
|
| 184 |
+
f'<h3>{raw_data["postsCount"] if raw_data["postsCount"] is not None else "—"}</h3></div>', unsafe_allow_html=True)
|
| 185 |
+
with c2:
|
| 186 |
+
st.markdown('<div class="kpi"><div class="small-muted">Followers</div>'
|
| 187 |
+
f'<h3>{raw_data["followersCount"] if raw_data["followersCount"] is not None else "—"}</h3></div>', unsafe_allow_html=True)
|
| 188 |
+
with c3:
|
| 189 |
+
st.markdown('<div class="kpi"><div class="small-muted">Following</div>'
|
| 190 |
+
f'<h3>{raw_data["followsCount"] if raw_data["followsCount"] is not None else "—"}</h3></div>', unsafe_allow_html=True)
|
| 191 |
+
|
| 192 |
+
with c4:
|
| 193 |
+
private_pill = '<span class="status-pill status-warn">Private</span>' if raw_data.get("private") else '<span class="status-pill status-ok">Public</span>'
|
| 194 |
+
st.markdown(f'<div class="kpi"><div class="small-muted">Privacy</div><div>{private_pill}</div></div>', unsafe_allow_html=True)
|
| 195 |
+
|
| 196 |
+
with c5:
|
| 197 |
+
verified_pill = '<span class="status-pill status-ok">Verified</span>' if raw_data.get("verified") else '<span class="status-pill status-bad">Not Verified</span>'
|
| 198 |
+
st.markdown(f'<div class="kpi"><div class="small-muted">Verification</div><div>{verified_pill}</div></div>', unsafe_allow_html=True)
|
| 199 |
+
|
| 200 |
+
# Prepare features
|
| 201 |
+
X = to_numeric_features(raw_data)
|
| 202 |
+
if X is None:
|
| 203 |
+
st.error("Insufficient numeric data to run the classifier (missing posts/followers/following).")
|
| 204 |
+
st.stop()
|
| 205 |
+
|
| 206 |
+
with st.spinner("Running prediction..."):
|
| 207 |
+
out = predict_with_model(X)
|
| 208 |
+
|
| 209 |
+
pred = out["pred"]
|
| 210 |
+
proba_real = out.get("proba_real")
|
| 211 |
+
proba_fake = out.get("proba_fake")
|
| 212 |
+
|
| 213 |
+
# ---------- Verdict ----------
|
| 214 |
+
st.subheader("Verdict")
|
| 215 |
+
if raw_data.get("postsCount") is None:
|
| 216 |
+
st.error("The user may not exist or data could not be fetched.")
|
| 217 |
+
elif pred == 0:
|
| 218 |
+
st.error("The account is **likely to be Fake**.")
|
| 219 |
+
else:
|
| 220 |
+
st.success("The account is **likely to be Real**.")
|
| 221 |
+
|
| 222 |
+
# ---------- Confidence ----------
|
| 223 |
+
if (proba_real is not None) or (proba_fake is not None):
|
| 224 |
+
st.write("**Confidence**")
|
| 225 |
+
cc1, cc2 = st.columns(2)
|
| 226 |
+
with cc1:
|
| 227 |
+
st.metric("Probability: Real", f"{(proba_real or 0)*100:0.1f}%")
|
| 228 |
+
with cc2:
|
| 229 |
+
st.metric("Probability: Fake", f"{(proba_fake or 0)*100:0.1f}%")
|
| 230 |
+
|
| 231 |
+
# ---------- Raw data (expandable) ----------
|
| 232 |
+
with st.expander("See fetched features"):
|
| 233 |
+
st.json(raw_data)
|
| 234 |
|
| 235 |
+
st.caption("⚠️ This tool provides an indicative score. Use responsibly and verify via additional checks.")
|