Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +143 -0
- plot_app.py +38 -0
- recipes.py +184 -0
app.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from plot_app import Plot
|
| 6 |
+
plotter = Plot()
|
| 7 |
+
from recipes import (
|
| 8 |
+
recipes_1_cotton_dark,
|
| 9 |
+
recipes_2_cotton_medium,
|
| 10 |
+
recipes_3_cotton_light,
|
| 11 |
+
recipes_4_polyester_dark,
|
| 12 |
+
recipes_5_pc_dark,
|
| 13 |
+
)
|
| 14 |
+
recipes_dict = {
|
| 15 |
+
("cotton", "dark"): recipes_1_cotton_dark,
|
| 16 |
+
("cotton", "medium"): recipes_2_cotton_medium,
|
| 17 |
+
("cotton", "light"): recipes_3_cotton_light,
|
| 18 |
+
("polyester", "dark"): recipes_4_polyester_dark,
|
| 19 |
+
("polycotton", "dark"): recipes_5_pc_dark,
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
def calculate_outputs(mlr, recipes, capacity):
|
| 23 |
+
"""Perform calculations for each machine."""
|
| 24 |
+
steam_consumption = []
|
| 25 |
+
moment_time = 0
|
| 26 |
+
time = []
|
| 27 |
+
initial_temp = []
|
| 28 |
+
final_temp = []
|
| 29 |
+
temp_grad = []
|
| 30 |
+
for i in recipes:
|
| 31 |
+
time.append(moment_time)
|
| 32 |
+
delta_t = recipes[i]["Duration"]
|
| 33 |
+
moment_time += delta_t
|
| 34 |
+
|
| 35 |
+
temp_diff = recipes[i]["final_temp"] - recipes[i]["init_temp"]
|
| 36 |
+
final_temp.append(recipes[i]["final_temp"])
|
| 37 |
+
initial_temp.append(recipes[i]["init_temp"])
|
| 38 |
+
temp_grad.append(recipes[i]["temp.grad"])
|
| 39 |
+
temp_diff = abs(temp_diff)
|
| 40 |
+
steam_use = (capacity * mlr * temp_diff) + (capacity * temp_diff)
|
| 41 |
+
steam_consumption.append(steam_use)
|
| 42 |
+
|
| 43 |
+
return {
|
| 44 |
+
"Steam Consumption": steam_consumption,
|
| 45 |
+
"Time": time,
|
| 46 |
+
"init_Temp": initial_temp,
|
| 47 |
+
"final_Temp": final_temp,
|
| 48 |
+
"temp_grad": temp_grad
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
def calculate_peak_avg_load(machine_results):
|
| 52 |
+
"""Calculate peak and average steam load for all machines."""
|
| 53 |
+
combined_steam_load = {}
|
| 54 |
+
start_time_offset = 0
|
| 55 |
+
|
| 56 |
+
for machine, results in machine_results.items():
|
| 57 |
+
for t, load in zip(results["Time"], results["Steam Consumption"]):
|
| 58 |
+
adjusted_time = t + start_time_offset
|
| 59 |
+
if adjusted_time in combined_steam_load:
|
| 60 |
+
combined_steam_load[adjusted_time] += load
|
| 61 |
+
else:
|
| 62 |
+
combined_steam_load[adjusted_time] = load
|
| 63 |
+
start_time_offset += 10 # Each machine starts 10 units after the previous one
|
| 64 |
+
|
| 65 |
+
peak_load = max(combined_steam_load.values())
|
| 66 |
+
avg_load = sum(combined_steam_load.values()) / len(combined_steam_load)
|
| 67 |
+
|
| 68 |
+
return peak_load, avg_load
|
| 69 |
+
|
| 70 |
+
def convert_df_to_csv(df):
|
| 71 |
+
return df.to_csv(index=False).encode('utf-8')
|
| 72 |
+
|
| 73 |
+
st.title("Dyeing Machine Load & Steam Calculator")
|
| 74 |
+
|
| 75 |
+
machine_type = st.selectbox("Select Type of Machine", ['SoftFlow'])
|
| 76 |
+
num_machines = st.number_input("Number of Dyeing Machines", min_value=1, value=5)
|
| 77 |
+
mlr = st.number_input("Enter the MLR for the process", min_value=2, value=6)
|
| 78 |
+
machine_capacities = {}
|
| 79 |
+
|
| 80 |
+
st.write("### Enter Machine Capacities")
|
| 81 |
+
for i in range(1, num_machines + 1):
|
| 82 |
+
capacity = st.number_input(f"Capacity of Machine {i} (kg)", min_value=1, value=100)
|
| 83 |
+
machine_capacities[f"{machine_type} {i}"] = capacity
|
| 84 |
+
|
| 85 |
+
toggle_fetch = st.checkbox("Take pre-built Recipe")
|
| 86 |
+
if toggle_fetch:
|
| 87 |
+
fabric = st.radio("Choose Fabric Type", ["Cotton", "Polyester", "PolyCotton"], index=0)
|
| 88 |
+
shade = st.radio("Choose your Shade", ["Dark", "Medium", "Light", "White"])
|
| 89 |
+
fabric_type = fabric.strip().lower()
|
| 90 |
+
shade = shade.strip().lower()
|
| 91 |
+
recipes = recipes_dict.get((fabric_type, shade), {})
|
| 92 |
+
else:
|
| 93 |
+
recipes = {}
|
| 94 |
+
|
| 95 |
+
st.write("### Results")
|
| 96 |
+
if "current_machine_index" not in st.session_state:
|
| 97 |
+
st.session_state["current_machine_index"] = 0
|
| 98 |
+
|
| 99 |
+
machine_names = list(machine_capacities.keys())
|
| 100 |
+
machine_results = {}
|
| 101 |
+
for machine in machine_names:
|
| 102 |
+
machine_results[machine] = calculate_outputs(mlr, recipes, machine_capacities[machine])
|
| 103 |
+
|
| 104 |
+
peak_load, avg_load = calculate_peak_avg_load(machine_results)
|
| 105 |
+
|
| 106 |
+
if st.button("Calculate Summary"):
|
| 107 |
+
st.markdown(
|
| 108 |
+
f"""
|
| 109 |
+
<div style='padding:10px; border-radius:10px; background-color:#05f5f5;'>
|
| 110 |
+
<h3 style='color:black;'>Summary</h3>
|
| 111 |
+
<p style='color:black;'><strong>Peak Steam Load:</strong> {peak_load} units</p>
|
| 112 |
+
<p style='color:black;'><strong>Average Steam Load:</strong> {avg_load} units</p>
|
| 113 |
+
</div>
|
| 114 |
+
""",
|
| 115 |
+
unsafe_allow_html=True,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
col1, col2 = st.columns(2)
|
| 119 |
+
with col1:
|
| 120 |
+
if st.button("Previous Machine"):
|
| 121 |
+
st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] - 1) % len(machine_names)
|
| 122 |
+
with col2:
|
| 123 |
+
if st.button("Next Machine"):
|
| 124 |
+
st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] + 1) % len(machine_names)
|
| 125 |
+
|
| 126 |
+
current_machine = machine_names[st.session_state["current_machine_index"]]
|
| 127 |
+
st.write(f"### Calculations for {current_machine}")
|
| 128 |
+
df_results = pd.DataFrame(machine_results[current_machine])
|
| 129 |
+
st.table(df_results)
|
| 130 |
+
|
| 131 |
+
csv = convert_df_to_csv(df_results)
|
| 132 |
+
st.download_button("Download Table as CSV", data=csv, file_name=f"{current_machine}_results.csv", mime='text/csv')
|
| 133 |
+
|
| 134 |
+
st.header("Steam Load Variation Over Time")
|
| 135 |
+
if st.button("Plot Steam Load Variation"):
|
| 136 |
+
fig1 = plotter.plot_steam_load(machine_results[current_machine]['Time'], machine_results[current_machine]['Steam Consumption'])
|
| 137 |
+
st.pyplot(fig1)
|
| 138 |
+
|
| 139 |
+
st.header("Temperature Variation Over Time")
|
| 140 |
+
if st.button("Plot Temperature Variation"):
|
| 141 |
+
fig2 = plotter.plot_temperature_curve(machine_results[current_machine]['Time'], machine_results[current_machine]['init_Temp'], machine_results[current_machine]['final_Temp'], machine_results[current_machine]['temp_grad'])
|
| 142 |
+
st.pyplot(fig2)
|
| 143 |
+
|
plot_app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
|
| 3 |
+
class Plot:
|
| 4 |
+
def plot_steam_load(self, time, steam_consumption):
|
| 5 |
+
"""
|
| 6 |
+
Plots the variation of steam load with respect to time.
|
| 7 |
+
:param time: List of time values.
|
| 8 |
+
:param steam_consumption: List of steam consumption values.
|
| 9 |
+
:return: Matplotlib figure object.
|
| 10 |
+
"""
|
| 11 |
+
fig, ax = plt.subplots()
|
| 12 |
+
ax.plot(time, steam_consumption, marker='o', linestyle='-', color='b', label='Steam Consumption')
|
| 13 |
+
ax.set_xlabel("Time")
|
| 14 |
+
ax.set_ylabel("Steam Consumption")
|
| 15 |
+
ax.set_title("Steam Load Variation Over Time")
|
| 16 |
+
ax.legend()
|
| 17 |
+
ax.grid()
|
| 18 |
+
return fig
|
| 19 |
+
|
| 20 |
+
def plot_temperature_curve(self, time, initial_temp, final_temp, temp_gradient):
|
| 21 |
+
"""
|
| 22 |
+
Plots the temperature variation over time.
|
| 23 |
+
:param time: List of time values.
|
| 24 |
+
:param initial_temp: List of initial temperatures at each time point.
|
| 25 |
+
:param final_temp: List of final temperatures at each time point.
|
| 26 |
+
:param temp_gradient: List of temperature gradients.
|
| 27 |
+
:return: Matplotlib figure object.
|
| 28 |
+
"""
|
| 29 |
+
fig, ax = plt.subplots()
|
| 30 |
+
ax.plot(time, initial_temp, marker='s', linestyle='--', color='r', label='Initial Temperature')
|
| 31 |
+
ax.plot(time, final_temp, marker='^', linestyle='-', color='g', label='Final Temperature')
|
| 32 |
+
ax.plot(time, temp_gradient, marker='d', linestyle=':', color='m', label='Temperature Gradient')
|
| 33 |
+
ax.set_xlabel("Time")
|
| 34 |
+
ax.set_ylabel("Temperature")
|
| 35 |
+
ax.set_title("Temperature Variation Over Time")
|
| 36 |
+
ax.legend()
|
| 37 |
+
ax.grid()
|
| 38 |
+
return fig
|
recipes.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
recipes_1_cotton_dark = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 2 |
+
'Stock heating_1':{'init_temp':30,"final_temp":70 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 3 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 4 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 5 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 6 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 7 |
+
'hold_2':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 8 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 9 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 10 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 11 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 12 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 13 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 14 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 15 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 16 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 17 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 18 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 19 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 20 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 21 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 22 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 23 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 24 |
+
'drain&stock_9':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 25 |
+
'hold_10':{'init_temp':60,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 26 |
+
'drain&stock_10':{'init_temp':30,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 27 |
+
'hold_11':{'init_temp':50,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 28 |
+
'drain&stock_11':{'init_temp':30,"final_temp":40 ,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 29 |
+
'hold_12':{'init_temp':40,"final_temp":40 ,"temp.grad":0 ,"Duration":14 ,"steam_flow_rate":0.2},
|
| 30 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
recipes_2_cotton_medium = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 35 |
+
'Stock heating_1':{'init_temp':30,"final_temp":70 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 36 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 37 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 38 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 39 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 40 |
+
'hold_2':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 41 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 42 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 43 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 44 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 45 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 46 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 47 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 48 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 49 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 50 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 51 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 52 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 53 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 54 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 55 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 56 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 57 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
recipes_3_cotton_light = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 62 |
+
'Stock heating_1':{'init_temp':30,"final_temp":70 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 63 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 64 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 65 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 66 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 67 |
+
'hold_2':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 68 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 69 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 70 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 71 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 72 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 73 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 74 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 75 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 76 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 77 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 78 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 79 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 80 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 81 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 82 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 83 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 84 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
recipes_4_polyester_dark = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 89 |
+
'Stock heating_1':{'init_temp':30,"final_temp":40 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 90 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 91 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 92 |
+
'hold_2':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 93 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 94 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 95 |
+
'hold_3':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 96 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 97 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 98 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 99 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 100 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 101 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 102 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 103 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 104 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 105 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 106 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 107 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 108 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 109 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 110 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 111 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 112 |
+
'drain&stock_9':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 113 |
+
'hold_10':{'init_temp':60,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 114 |
+
'drain&stock_10':{'init_temp':30,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 115 |
+
'hold_11':{'init_temp':50,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 116 |
+
'drain&stock_11':{'init_temp':30,"final_temp":40 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 117 |
+
'hold_12':{'init_temp':40,"final_temp":40 ,"temp.grad":0 ,"Duration":14 ,"steam_flow_rate":0.2},
|
| 118 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
recipes_5_pc_dark = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 122 |
+
'Stock heating_1':{'init_temp':30,"final_temp":70 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 123 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 124 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 125 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 126 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 127 |
+
'hold_2':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 128 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 129 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 130 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 131 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 132 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 133 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 134 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 135 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 136 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 137 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 138 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 139 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 140 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 141 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 142 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 143 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 144 |
+
'drain&stock_9':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 145 |
+
'hold_10':{'init_temp':60,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 146 |
+
'drain&stock_10':{'init_temp':30,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 147 |
+
'hold_11':{'init_temp':50,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 148 |
+
'drain&stock_11':{'init_temp':30,"final_temp":40 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 149 |
+
'hold_12':{'init_temp':40,"final_temp":40 ,"temp.grad":0 ,"Duration":14 ,"steam_flow_rate":0.2},
|
| 150 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
recipes_5_sample_shade = {'loading':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 155 |
+
'Stock heating_1':{'init_temp':30,"final_temp":70 ,"temp.grad":0 ,"Duration": 10,"steam_flow_rate":0.73},
|
| 156 |
+
'heating_1':{'init_temp':70,"final_temp":110 ,"temp.grad":3.5 ,"Duration": 12,"steam_flow_rate":0.38},
|
| 157 |
+
'hold_1':{'init_temp':110,"final_temp":110 ,"temp.grad":0,"Duration":11 ,"steam_flow_rate":0.02},
|
| 158 |
+
'cooling_1':{'init_temp':110,"final_temp":90 ,"temp.grad":2 ,"Duration":3 ,"steam_flow_rate":0},
|
| 159 |
+
'drain&stock_1':{'init_temp':30,"final_temp":70,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 160 |
+
'hold_2':{'init_temp':70,"final_temp":70 ,"temp.grad":0,"Duration":5,"steam_flow_rate":0.02},
|
| 161 |
+
'drain&stock_2':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10 ,"steam_flow_rate":0.73},
|
| 162 |
+
'hold_3':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7 ,"steam_flow_rate":0.02},
|
| 163 |
+
'drain&stock_3':{'init_temp':30,"final_temp":60,"temp.grad":0,"Duration": 10,"steam_flow_rate":0.73},
|
| 164 |
+
'hold_4':{'init_temp':60,"final_temp":60,"temp.grad":0,"Duration":100 ,"steam_flow_rate":0.02},
|
| 165 |
+
'drain&stock_4':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 166 |
+
'hold_5':{'init_temp':50,"final_temp":50,"temp.grad":0,"Duration":7,"steam_flow_rate":0.02},
|
| 167 |
+
'drain&stock_5':{'init_temp':30,"final_temp":50,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 168 |
+
'hold_6':{'init_temp':50,"final_temp": 50,"temp.grad":0,"Duration": 7,"steam_flow_rate":0.02},
|
| 169 |
+
'drain&stock_6':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.73},
|
| 170 |
+
'heating_2':{'init_temp':80,"final_temp":95,"temp.grad":3.5 ,"Duration":4 ,"steam_flow_rate":0.38},
|
| 171 |
+
'hold_7':{'init_temp':95,"final_temp":95,"temp.grad":0 ,"Duration":7 ,"steam_flow_rate":0.02},
|
| 172 |
+
'cooling_2':{'init_temp':95,"final_temp":90 ,"temp.grad":2 ,"Duration":10 ,"steam_flow_rate":0},
|
| 173 |
+
'drain&stock_7':{'init_temp':30,"final_temp":80,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 174 |
+
'hold_8':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10,"steam_flow_rate":0.02},
|
| 175 |
+
'drain&stock_8':{'init_temp':30,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 176 |
+
'hold_9':{'init_temp':80,"final_temp":80 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 177 |
+
'drain&stock_9':{'init_temp':30,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 178 |
+
'hold_10':{'init_temp':60,"final_temp":60 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 179 |
+
'drain&stock_10':{'init_temp':30,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.73},
|
| 180 |
+
'hold_11':{'init_temp':50,"final_temp":50 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0.02},
|
| 181 |
+
'drain&stock_11':{'init_temp':30,"final_temp":40 ,"temp.grad":0,"Duration":10,"steam_flow_rate":0.73},
|
| 182 |
+
'hold_12':{'init_temp':40,"final_temp":40 ,"temp.grad":0 ,"Duration":14 ,"steam_flow_rate":0.2},
|
| 183 |
+
'drain&unload':{'init_temp':0,"final_temp":0 ,"temp.grad":0 ,"Duration":10 ,"steam_flow_rate":0},
|
| 184 |
+
}
|