File size: 1,668 Bytes
cd10708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from use_ml import preprocess_text

def predict_sentiment():
    model = tf.keras.models.load_model("nn_binary.keras")
    vectorizer = tf.keras.models.load_model("nn_vectorizer_binary.keras")
    def _inner(text: str) -> str:
        p_text = preprocess_text(text)
        vec = vectorizer([p_text])
        pred = model.predict(vec)[0][0]
        res = {
            "labels": "positive" if pred >= 0.5 else "negative",
            "probs": pred
        }
        return res
    return _inner

def predict_category():
    model = tf.keras.models.load_model("nn_category.keras")
    vectorizer = tf.keras.models.load_model("nn_vectorizer_category.keras")
    def _inner(text: str) -> str:
        p_text = preprocess_text(text)
        vec = vectorizer([p_text])
        pred = model.predict(vec)[0]
        labels = [
            "политика",
            "экономика",
            "спорт",
            "культура"
        ]
        res = {
            "labels": labels,
            "probs": pred
        }
        return res
    return _inner

def predict_categorys():
    model = tf.keras.models.load_model("nn_categorys.keras")
    vectorizer = tf.keras.models.load_model("nn_vectorizer_categorys.keras")
    def _inner(text: str):
        p_text = preprocess_text(text)
        vec = vectorizer([p_text])
        labels = [
            "политика",
            "экономика",
            "спорт",
            "культура"
        ]
        pred = model.predict(vec)[0]
        res = {
            "labels": labels,
            "probs": pred
        }
        return res
    return _inner