| import gradio as gr | |
| from transformers import pipeline | |
| pipeline = pipeline(task="image-classification", model="unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit") | |
| def predict(image): | |
| predictions = pipeline(image) | |
| return {p["label"]: p["score"] for p in predictions} | |
| gr.Interface( | |
| predict, | |
| inputs=gr.Image(label="Upload hot dog candidate", type="filepath"), | |
| outputs=gr.Label(num_top_classes=2), | |
| title="Hot Dog? Or Not?", | |
| ).launch() |