Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,24 +27,32 @@ class EmbeddingBackend:
|
|
| 27 |
def __init__(self, repo: str):
|
| 28 |
self.repo = repo
|
| 29 |
if repo == "BAAI/bge-small-en-v1.5":
|
| 30 |
-
# FlagEmbedding back‑end (BGE)
|
| 31 |
self.model = FlagModel(
|
| 32 |
repo,
|
| 33 |
-
query_instruction_for_retrieval="
|
| 34 |
use_fp16=True,
|
| 35 |
)
|
| 36 |
-
self.encode_docs = self.model.encode
|
| 37 |
self.encode_query = lambda q: self.model.encode_queries([q])[0]
|
| 38 |
else:
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
if "Qwen3" in repo:
|
| 42 |
self.encode_query = lambda q: self.model.encode(q, prompt_name="query")
|
| 43 |
elif "stella" in repo:
|
| 44 |
self.encode_query = lambda q: self.model.encode(q, prompt_name="s2p_query")
|
| 45 |
else:
|
| 46 |
self.encode_query = lambda q: self.model.encode(q)
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# Convenience wrappers that return *numpy* arrays
|
| 50 |
def encode_corpus(self, passages: List[str]) -> np.ndarray:
|
|
|
|
| 27 |
def __init__(self, repo: str):
|
| 28 |
self.repo = repo
|
| 29 |
if repo == "BAAI/bge-small-en-v1.5":
|
|
|
|
| 30 |
self.model = FlagModel(
|
| 31 |
repo,
|
| 32 |
+
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
| 33 |
use_fp16=True,
|
| 34 |
)
|
| 35 |
+
self.encode_docs = lambda docs: self.model.encode(docs, batch_size=BATCH_SIZE)
|
| 36 |
self.encode_query = lambda q: self.model.encode_queries([q])[0]
|
| 37 |
else:
|
| 38 |
+
model_kwargs = {}
|
| 39 |
+
if "Qwen3" in repo and not os.getenv("QWEN_USE_FLASH"):
|
| 40 |
+
model_kwargs["attn_implementation"] = "eager" # lower‑mem CPU path
|
| 41 |
+
self.model = SentenceTransformer(repo, trust_remote_code=True, model_kwargs=model_kwargs)
|
| 42 |
+
|
| 43 |
+
# Custom token truncation handled externally
|
| 44 |
if "Qwen3" in repo:
|
| 45 |
self.encode_query = lambda q: self.model.encode(q, prompt_name="query")
|
| 46 |
elif "stella" in repo:
|
| 47 |
self.encode_query = lambda q: self.model.encode(q, prompt_name="s2p_query")
|
| 48 |
else:
|
| 49 |
self.encode_query = lambda q: self.model.encode(q)
|
| 50 |
+
|
| 51 |
+
self.encode_docs = lambda docs: self.model.encode(
|
| 52 |
+
docs,
|
| 53 |
+
batch_size=BATCH_SIZE,
|
| 54 |
+
normalize_embeddings=False,
|
| 55 |
+
)
|
| 56 |
|
| 57 |
# Convenience wrappers that return *numpy* arrays
|
| 58 |
def encode_corpus(self, passages: List[str]) -> np.ndarray:
|