File size: 5,865 Bytes
249049b
06611cb
 
3e9dbbe
79eb00d
0d0ecdd
42ba242
39af8fe
 
 
be9dd25
170771d
 
cfe897e
 
 
39af8fe
249049b
0d0ecdd
42ba242
fac8a97
42ba242
fac8a97
6d1fbad
3e9dbbe
45abe90
39af8fe
 
 
 
 
be9dd25
 
 
06611cb
f32ec63
2ba7df1
06611cb
bea52c9
e028bfd
 
2b51d25
 
cfe897e
2b51d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba7df1
cfe897e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6125895
cfe897e
6125895
cfe897e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170771d
 
2b51d25
170771d
 
 
 
2b51d25
 
170771d
2b51d25
 
 
170771d
2b51d25
 
 
 
cfe897e
 
170771d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from fastapi import FastAPI
import torch
import pickle
from huggingface_hub import hf_hub_download, snapshot_download
from Nested.nn.BertSeqTagger import BertSeqTagger
from transformers import AutoTokenizer, AutoModel
import inspect
from collections import namedtuple
from Nested.utils.helpers import load_checkpoint
from Nested.utils.data import get_dataloaders, text2segments
import json
from pydantic import BaseModel
from fastapi.responses import JSONResponse
from IBO_to_XML import IBO_to_XML
from XML_to_HTML import NER_XML_to_HTML
from NER_Distiller import distill_entities

app = FastAPI()

pretrained_path = "aubmindlab/bert-base-arabertv2"  # must match training
tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
encoder = AutoModel.from_pretrained(pretrained_path).eval()


checkpoint_path = snapshot_download(repo_id="SinaLab/Nested", allow_patterns="checkpoints/")

args_path = hf_hub_download(
    repo_id="SinaLab/Nested",
    filename="args.json"
)

with open(args_path, 'r') as f:
    args_data = json.load(f)
    
# Load model
with open("Nested/utils/tag_vocab.pkl", "rb") as f:
    label_vocab = pickle.load(f)

label_vocab = label_vocab[0]  # the list loaded from pickle
id2label = {i: s for i, s in enumerate(label_vocab.itos)}

def split_text_into_groups_of_Ns(sentence, max_words_per_sentence):
    # Split the text into words
    words = sentence.split()
    
    # Initialize variables
    groups = []
    current_group = ""
    group_size = 0
    
    # Iterate through the words
    for word in words:
        if group_size < max_words_per_sentence - 1:
            if len(current_group) == 0:
                current_group = word
            else:
                current_group += " " + word
            group_size += 1
        else:
            current_group += " " + word
            groups.append(current_group)
            current_group = ""
            group_size = 0
    
    # Add the last group if it contains less than n words
    if current_group:
        groups.append(current_group)
    
    return groups



def remove_empty_values(sentences):
    return [value for value in sentences if value != '']


def sentence_tokenizer(text, dot=True, new_line=True, question_mark=True, exclamation_mark=True):
    separators = []
    split_text = [text]
    if new_line==True:
        separators.append('\n')
    if dot==True:
        separators.append('.')
    if question_mark==True:
        separators.append('?')
        separators.append('؟')
    if exclamation_mark==True:
        separators.append('!')
    
    for sep in separators:
        new_split_text = []
        for part in split_text:
            tokens = part.split(sep)
            tokens_with_separator = [token + sep for token in tokens[:-1]]
            tokens_with_separator.append(tokens[-1].strip())
            new_split_text.extend(tokens_with_separator)
        split_text = new_split_text
    
    split_text = remove_empty_values(split_text)    
    return split_text

def jsons_to_list_of_lists(json_list):
    return [[d['token'], d['tags']] for d in json_list]

tagger, tag_vocab, train_config = load_checkpoint(checkpoint_path)

def extract(sentence):
    dataset, token_vocab = text2segments(sentence)

    vocabs = namedtuple("Vocab", ["tags", "tokens"])
    vocab = vocabs(tokens=token_vocab, tags=tag_vocab)

    dataloader = get_dataloaders(
        (dataset,),
        vocab,
        args_data,
        batch_size=32,
        shuffle=(False,),
    )[0]

    segments = tagger.infer(dataloader)

    lists = []

    for segment in segments:
        for token in segment:
            item = {}
            item["token"] = token.text

            list_of_tags = [t["tag"] for t in token.pred_tag]
            list_of_tags = [i for i in list_of_tags if i not in ("O", " ", "")]

            if not list_of_tags:
                item["tags"] = "O"
            else:
                item["tags"] = " ".join(list_of_tags)
            lists.append(item)
    return lists


def NER(sentence, mode):
    output_list = []
    xml = ""
    if mode.strip() == "1":
        output_list = jsons_to_list_of_lists(extract(sentence))
        return output_list
    elif mode.strip() == "2":
        if output_list != []:
            xml = IBO_to_XML(output_list)
            return xml
        else:
            output_list = jsons_to_list_of_lists(extract(sentence))
            xml = IBO_to_XML(output_list)
            return xml
                    
    elif mode.strip() == "3":
        if xml != "":
            html = NER_XML_to_HTML(xml)
            return html
        else:
            output_list = jsons_to_list_of_lists(extract(sentence))
            xml = IBO_to_XML(output_list)
            html = NER_XML_to_HTML(xml)
            return html

    elif mode.strip() == "4": # json short
        if output_list != []:
            json_short = distill_entities(output_list)
            return json_short
        else:
            output_list = jsons_to_list_of_lists(extract(sentence))
            json_short = distill_entities(output_list)
            return json_short



class NERRequest(BaseModel):
    text: str
    mode: str

@app.post("/predict")
def predict(request: NERRequest):
    # Load tagger
    text = request.text  
    mode = request.mode  

    sentences = sentence_tokenizer(
        text, dot=False, new_line=True, question_mark=False, exclamation_mark=False
    )

    lists = []
    for sentence in sentences:
        se = split_text_into_groups_of_Ns(sentence, max_words_per_sentence=300)
        for s in se:
            output_list = NER(s, mode)
            lists.append(output_list)        

    content = {
        "resp": lists,
        "statusText": "OK",
        "statusCode": 0,
    }

    return JSONResponse(
        content=content,
        media_type="application/json",
        status_code=200,
    )