Spaces:
Runtime error
Runtime error
| from einops import rearrange, reduce, repeat | |
| import torch.nn.functional as F | |
| import torch | |
| import gc | |
| from src.utils import * | |
| from src.flow_utils import get_mapping_ind, warp_tensor | |
| from diffusers.models.unet_2d_condition import UNet2DConditionOutput | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import sys | |
| sys.path.append("./src/ebsynth/deps/gmflow/") | |
| from gmflow.geometry import flow_warp, forward_backward_consistency_check | |
| """ | |
| ========================================================================== | |
| PART I - FRESCO-based attention | |
| * Class AttentionControl: Control the function of FRESCO-based attention | |
| * Class FRESCOAttnProcessor2_0: FRESCO-based attention | |
| * apply_FRESCO_attn(): Apply FRESCO-based attention to a StableDiffusionPipeline | |
| ========================================================================== | |
| """ | |
| class AttentionControl(): | |
| """ | |
| Control FRESCO-based attention | |
| * enable/diable spatial-guided attention | |
| * enable/diable temporal-guided attention | |
| * enable/diable cross-frame attention | |
| * collect intermediate attention feature (for spatial-guided attention) | |
| """ | |
| def __init__(self): | |
| self.stored_attn = self.get_empty_store() | |
| self.store = False | |
| self.index = 0 | |
| self.attn_mask = None | |
| self.interattn_paras = None | |
| self.use_interattn = False | |
| self.use_cfattn = False | |
| self.use_intraattn = False | |
| self.intraattn_bias = 0 | |
| self.intraattn_scale_factor = 0.2 | |
| self.interattn_scale_factor = 0.2 | |
| def get_empty_store(): | |
| return { | |
| 'decoder_attn': [], | |
| } | |
| def clear_store(self): | |
| del self.stored_attn | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.stored_attn = self.get_empty_store() | |
| self.disable_intraattn() | |
| # store attention feature of the input frame for spatial-guided attention | |
| def enable_store(self): | |
| self.store = True | |
| def disable_store(self): | |
| self.store = False | |
| # spatial-guided attention | |
| def enable_intraattn(self): | |
| self.index = 0 | |
| self.use_intraattn = True | |
| self.disable_store() | |
| if len(self.stored_attn['decoder_attn']) == 0: | |
| self.use_intraattn = False | |
| def disable_intraattn(self): | |
| self.index = 0 | |
| self.use_intraattn = False | |
| self.disable_store() | |
| def disable_cfattn(self): | |
| self.use_cfattn = False | |
| # cross frame attention | |
| def enable_cfattn(self, attn_mask=None): | |
| if attn_mask: | |
| if self.attn_mask: | |
| del self.attn_mask | |
| torch.cuda.empty_cache() | |
| self.attn_mask = attn_mask | |
| self.use_cfattn = True | |
| else: | |
| if self.attn_mask: | |
| self.use_cfattn = True | |
| else: | |
| print('Warning: no valid cross-frame attention parameters available!') | |
| self.disable_cfattn() | |
| def disable_interattn(self): | |
| self.use_interattn = False | |
| # temporal-guided attention | |
| def enable_interattn(self, interattn_paras=None): | |
| if interattn_paras: | |
| if self.interattn_paras: | |
| del self.interattn_paras | |
| torch.cuda.empty_cache() | |
| self.interattn_paras = interattn_paras | |
| self.use_interattn = True | |
| else: | |
| if self.interattn_paras: | |
| self.use_interattn = True | |
| else: | |
| print('Warning: no valid temporal-guided attention parameters available!') | |
| self.disable_interattn() | |
| def disable_controller(self): | |
| self.disable_intraattn() | |
| self.disable_interattn() | |
| self.disable_cfattn() | |
| def enable_controller(self, interattn_paras=None, attn_mask=None): | |
| self.enable_intraattn() | |
| self.enable_interattn(interattn_paras) | |
| self.enable_cfattn(attn_mask) | |
| def forward(self, context): | |
| if self.store: | |
| self.stored_attn['decoder_attn'].append(context.detach()) | |
| if self.use_intraattn and len(self.stored_attn['decoder_attn']) > 0: | |
| tmp = self.stored_attn['decoder_attn'][self.index] | |
| self.index = self.index + 1 | |
| if self.index >= len(self.stored_attn['decoder_attn']): | |
| self.index = 0 | |
| self.disable_store() | |
| return tmp | |
| return context | |
| def __call__(self, context): | |
| context = self.forward(context) | |
| return context | |
| #import xformers | |
| #import importlib | |
| class FRESCOAttnProcessor2_0: | |
| """ | |
| Hack self attention to FRESCO-based attention | |
| * adding spatial-guided attention | |
| * adding temporal-guided attention | |
| * adding cross-frame attention | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| Usage | |
| frescoProc = FRESCOAttnProcessor2_0(2, attn_mask) | |
| attnProc = AttnProcessor2_0() | |
| attn_processor_dict = {} | |
| for k in pipe.unet.attn_processors.keys(): | |
| if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): | |
| attn_processor_dict[k] = frescoProc | |
| else: | |
| attn_processor_dict[k] = attnProc | |
| pipe.unet.set_attn_processor(attn_processor_dict) | |
| """ | |
| def __init__(self, unet_chunk_size=2, controller=None): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.unet_chunk_size = unet_chunk_size | |
| self.controller = controller | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| crossattn = False | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| if self.controller and self.controller.store: | |
| self.controller(hidden_states.detach().clone()) | |
| else: | |
| crossattn = True | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| # BC * HW * 8D | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query_raw, key_raw = None, None | |
| if self.controller and self.controller.use_interattn and (not crossattn): | |
| query_raw, key_raw = query.clone(), key.clone() | |
| inner_dim = key.shape[-1] # 8D | |
| head_dim = inner_dim // attn.heads # D | |
| '''for efficient cross-frame attention''' | |
| if self.controller and self.controller.use_cfattn and (not crossattn): | |
| video_length = key.size()[0] // self.unet_chunk_size | |
| former_frame_index = [0] * video_length | |
| attn_mask = None | |
| if self.controller.attn_mask is not None: | |
| for m in self.controller.attn_mask: | |
| if m.shape[1] == key.shape[1]: | |
| attn_mask = m | |
| # BC * HW * 8D --> B * C * HW * 8D | |
| key = rearrange(key, "(b f) d c -> b f d c", f=video_length) | |
| # B * C * HW * 8D --> B * C * HW * 8D | |
| if attn_mask is None: | |
| key = key[:, former_frame_index] | |
| else: | |
| key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length) | |
| # B * C * HW * 8D --> BC * HW * 8D | |
| key = rearrange(key, "b f d c -> (b f) d c").detach() | |
| value = rearrange(value, "(b f) d c -> b f d c", f=video_length) | |
| if attn_mask is None: | |
| value = value[:, former_frame_index] | |
| else: | |
| value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length) | |
| value = rearrange(value, "b f d c -> (b f) d c").detach() | |
| # BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # BC * 8 * HW2 * D | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # BC * 8 * HW2 * D2 | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| '''for spatial-guided intra-frame attention''' | |
| if self.controller and self.controller.use_intraattn and (not crossattn): | |
| ref_hidden_states = self.controller(None) | |
| assert ref_hidden_states.shape == encoder_hidden_states.shape | |
| query_ = attn.to_q(ref_hidden_states) | |
| key_ = attn.to_k(ref_hidden_states) | |
| ''' | |
| # for xformers implementation | |
| if importlib.util.find_spec("xformers") is not None: | |
| # BC * HW * 8D --> BC * HW * 8 * D | |
| query_ = rearrange(query_, "b d (h c) -> b d h c", h=attn.heads) | |
| key_ = rearrange(key_, "b d (h c) -> b d h c", h=attn.heads) | |
| # BC * 8 * HW * D --> 8BC * HW * D | |
| query = rearrange(query, "b h d c -> b d h c") | |
| query = xformers.ops.memory_efficient_attention( | |
| query_, key_ * self.sattn_scale_factor, query, | |
| attn_bias=torch.eye(query_.size(1), key_.size(1), | |
| dtype=query.dtype, device=query.device) * self.bias_weight, op=None | |
| ) | |
| query = rearrange(query, "b d h c -> b h d c").detach() | |
| ''' | |
| # BC * 8 * HW * D | |
| query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| query = F.scaled_dot_product_attention( | |
| query_, key_ * self.controller.intraattn_scale_factor, query, | |
| attn_mask = torch.eye(query_.size(-2), key_.size(-2), | |
| dtype=query.dtype, device=query.device) * self.controller.intraattn_bias, | |
| ).detach() | |
| #print('intra: ', GPU.getGPUs()[1].memoryUsed) | |
| del query_, key_ | |
| torch.cuda.empty_cache() | |
| ''' | |
| # for xformers implementation | |
| if importlib.util.find_spec("xformers") is not None: | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| rearrange(query, "b h d c -> b d h c"), rearrange(key, "b h d c -> b d h c"), | |
| rearrange(value, "b h d c -> b d h c"), | |
| attn_bias=attention_mask, op=None | |
| ) | |
| hidden_states = rearrange(hidden_states, "b d h c -> b h d c", h=attn.heads) | |
| ''' | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| # output: BC * 8 * HW * D2 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| #print('cross: ', GPU.getGPUs()[1].memoryUsed) | |
| '''for temporal-guided inter-frame attention (FLATTEN)''' | |
| if self.controller and self.controller.use_interattn and (not crossattn): | |
| del query, key, value | |
| torch.cuda.empty_cache() | |
| bwd_mapping = None | |
| fwd_mapping = None | |
| flattn_mask = None | |
| for i, f in enumerate(self.controller.interattn_paras['fwd_mappings']): | |
| if f.shape[2] == hidden_states.shape[2]: | |
| fwd_mapping = f | |
| bwd_mapping = self.controller.interattn_paras['bwd_mappings'][i] | |
| interattn_mask = self.controller.interattn_paras['interattn_masks'][i] | |
| video_length = key_raw.size()[0] // self.unet_chunk_size | |
| # BC * HW * 8D --> C * 8BD * HW | |
| key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length) | |
| query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length) | |
| # BC * 8 * HW * D --> C * 8BD * HW | |
| #key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ######## | |
| #query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ####### | |
| value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) | |
| key = torch.gather(key, 2, fwd_mapping.expand(-1,key.shape[1],-1)) | |
| query = torch.gather(query, 2, fwd_mapping.expand(-1,query.shape[1],-1)) | |
| value = torch.gather(value, 2, fwd_mapping.expand(-1,value.shape[1],-1)) | |
| # C * 8BD * HW --> BHW, C, 8D | |
| key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
| query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
| value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) | |
| ''' | |
| # for xformers implementation | |
| if importlib.util.find_spec("xformers") is not None: | |
| # BHW * C * 8D --> BHW * C * 8 * D | |
| query = rearrange(query, "b d (h c) -> b d h c", h=attn.heads) | |
| key = rearrange(key, "b d (h c) -> b d h c", h=attn.heads) | |
| value = rearrange(value, "b d (h c) -> b d h c", h=attn.heads) | |
| B, D, C, _ = flattn_mask.shape | |
| C1 = int(np.ceil(C / 4) * 4) | |
| attn_bias = torch.zeros(B, D, C, C1, dtype=value.dtype, device=value.device) # HW * 1 * C * C | |
| attn_bias[:,:,:,:C].masked_fill_(interattn_mask.logical_not(), float("-inf")) # BHW * C * C | |
| hidden_states_ = xformers.ops.memory_efficient_attention( | |
| query, key * self.controller.interattn_scale_factor, value, | |
| attn_bias=attn_bias.squeeze(1).repeat(self.unet_chunk_size*attn.heads,1,1)[:,:,:C], op=None | |
| ) | |
| hidden_states_ = rearrange(hidden_states_, "b d h c -> b h d c", h=attn.heads).detach() | |
| ''' | |
| # BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D | |
| query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
| key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
| value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() | |
| hidden_states_ = F.scaled_dot_product_attention( | |
| query, key * self.controller.interattn_scale_factor, value, | |
| attn_mask = (interattn_mask.repeat(self.unet_chunk_size,1,1,1))#.to(query.dtype)-1.0) * 1e6 - | |
| #torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4, | |
| ) | |
| # BHW * 8 * C * D --> C * 8BD * HW | |
| hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size) | |
| hidden_states_ = torch.gather(hidden_states_, 2, bwd_mapping.expand(-1,hidden_states_.shape[1],-1)).detach() | |
| # C * 8BD * HW --> BC * 8 * HW * D | |
| hidden_states = rearrange(hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads) | |
| #print('inter: ', GPU.getGPUs()[1].memoryUsed) | |
| # BC * 8 * HW * D --> BC * HW * 8D | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def apply_FRESCO_attn(pipe): | |
| """ | |
| Apply FRESCO-guided attention to a StableDiffusionPipeline | |
| """ | |
| frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) | |
| attnProc = AttnProcessor2_0() | |
| attn_processor_dict = {} | |
| for k in pipe.unet.attn_processors.keys(): | |
| if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): | |
| attn_processor_dict[k] = frescoProc | |
| else: | |
| attn_processor_dict[k] = attnProc | |
| pipe.unet.set_attn_processor(attn_processor_dict) | |
| return frescoProc | |
| """ | |
| ========================================================================== | |
| PART II - FRESCO-based optimization | |
| * optimize_feature(): function to optimze latent feature | |
| * my_forward(): hacked pipe.unet.forward(), adding feature optimization | |
| * apply_FRESCO_opt(): function to apply FRESCO-based optimization to a StableDiffusionPipeline | |
| * disable_FRESCO_opt(): function to disable the FRESCO-based optimization | |
| ========================================================================== | |
| """ | |
| def optimize_feature(sample, flows, occs, correlation_matrix=[], | |
| intra_weight = 1e2, iters=20, unet_chunk_size=2, optimize_temporal = True): | |
| """ | |
| FRESO-guided latent feature optimization | |
| * optimize spatial correspondence (match correlation_matrix) | |
| * optimize temporal correspondence (match warped_image) | |
| """ | |
| if (flows is None or occs is None or (not optimize_temporal)) and (intra_weight == 0 or len(correlation_matrix) == 0): | |
| return sample | |
| # flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1 | |
| # occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1 | |
| # sample: 2N*C*H*W | |
| torch.cuda.empty_cache() | |
| video_length = sample.shape[0] // unet_chunk_size | |
| latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length) | |
| cs = torch.nn.Parameter((latent.detach().clone())) | |
| optimizer = torch.optim.Adam([cs], lr=0.2) | |
| # unify resolution | |
| if flows is not None and occs is not None: | |
| scale = sample.shape[2] * 1.0 / flows[0].shape[2] | |
| kernel = int(1 / scale) | |
| bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1) | |
| bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1 | |
| fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1) | |
| fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1 | |
| # match frame 0,1,2,3 and frame 1,2,3,0 | |
| reshuffle_list = list(range(1,video_length))+[0] | |
| # attention_probs is the GRAM matrix of the normalized feature | |
| attention_probs = None | |
| for tmp in correlation_matrix: | |
| if sample.shape[2] * sample.shape[3] == tmp.shape[1]: | |
| attention_probs = tmp # 2N*HW*HW | |
| break | |
| n_iter=[0] | |
| while n_iter[0] < iters: | |
| def closure(): | |
| optimizer.zero_grad() | |
| loss = 0 | |
| # temporal consistency loss | |
| if optimize_temporal and flows is not None and occs is not None: | |
| c1 = rearrange(cs[:,:], "b f c h w -> (b f) c h w") | |
| c2 = rearrange(cs[:,reshuffle_list], "b f c h w -> (b f) c h w") | |
| warped_image1 = flow_warp(c1, bwd_flow_) | |
| warped_image2 = flow_warp(c2, fwd_flow_) | |
| loss = (abs((c2-warped_image1)*(1-bwd_occ_)) + abs((c1-warped_image2)*(1-fwd_occ_))).mean() * 2 | |
| # spatial consistency loss | |
| if attention_probs is not None and intra_weight > 0: | |
| cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c") | |
| #attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) | |
| #cs_attention_probs = attention_scores.softmax(dim=-1) | |
| cs_vector = cs_vector / ((cs_vector ** 2).sum(dim=2, keepdims=True) ** 0.5) | |
| cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) | |
| tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight | |
| loss = tmp + loss | |
| loss.backward() | |
| n_iter[0]+=1 | |
| if False: # for debug | |
| print('Iteration: %d, loss: %f'%(n_iter[0]+1, loss.data.mean())) | |
| return loss | |
| optimizer.step(closure) | |
| torch.cuda.empty_cache() | |
| return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample) | |
| def my_forward(self, steps = [], layers = [0,1,2,3], flows = None, occs = None, | |
| correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None): | |
| """ | |
| Hacked pipe.unet.forward() | |
| copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700 | |
| if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code) | |
| * restore and return the decoder features | |
| * optimize the decoder features | |
| * perform background smoothing | |
| """ | |
| def forward( | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[UNet2DConditionOutput, Tuple]: | |
| r""" | |
| The [`UNet2DConditionModel`] forward method. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
| timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
| encoder_attention_mask (`torch.Tensor`): | |
| A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
| `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
| which adds large negative values to the attention scores corresponding to "discard" tokens. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
| added_cond_kwargs: (`dict`, *optional*): | |
| A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
| are passed along to the UNet blocks. | |
| Returns: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
| If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
| a `tuple` is returned where the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| aug_emb = None | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # there might be better ways to encapsulate this. | |
| class_labels = class_labels.to(dtype=sample.dtype) | |
| class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
| if self.config.class_embeddings_concat: | |
| emb = torch.cat([emb, class_emb], dim=-1) | |
| else: | |
| emb = emb + class_emb | |
| if self.config.addition_embed_type == "text": | |
| aug_emb = self.add_embedding(encoder_hidden_states) | |
| elif self.config.addition_embed_type == "text_image": | |
| # Kandinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
| aug_emb = self.add_embedding(text_embs, image_embs) | |
| elif self.config.addition_embed_type == "text_time": | |
| # SDXL - style | |
| if "text_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| text_embeds = added_cond_kwargs.get("text_embeds") | |
| if "time_ids" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
| ) | |
| time_ids = added_cond_kwargs.get("time_ids") | |
| time_embeds = self.add_time_proj(time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
| add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
| add_embeds = add_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(add_embeds) | |
| elif self.config.addition_embed_type == "image": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| aug_emb = self.add_embedding(image_embs) | |
| elif self.config.addition_embed_type == "image_hint": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| hint = added_cond_kwargs.get("hint") | |
| aug_emb, hint = self.add_embedding(image_embs, hint) | |
| sample = torch.cat([sample, hint], dim=1) | |
| emb = emb + aug_emb if aug_emb is not None else emb | |
| if self.time_embed_act is not None: | |
| emb = self.time_embed_act(emb) | |
| if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
| elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
| # Kadinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
| ) | |
| image_embeds = added_cond_kwargs.get("image_embeds") | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
| elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
| ) | |
| image_embeds = added_cond_kwargs.get("image_embeds") | |
| encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
| is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| # For t2i-adapter CrossAttnDownBlock2D | |
| additional_residuals = {} | |
| if is_adapter and len(down_block_additional_residuals) > 0: | |
| additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| **additional_residuals, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| if is_adapter and len(down_block_additional_residuals) > 0: | |
| sample += down_block_additional_residuals.pop(0) | |
| down_block_res_samples += res_samples | |
| if is_controlnet: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
| new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| if is_controlnet: | |
| sample = sample + mid_block_additional_residual | |
| # 5. up | |
| ''' | |
| [HACK] restore the decoder features in up_samples | |
| ''' | |
| up_samples = () | |
| #down_samples = () | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| ''' | |
| [HACK] restore the decoder features in up_samples | |
| [HACK] optimize the decoder features | |
| [HACK] perform background smoothing | |
| ''' | |
| if i in layers: | |
| up_samples += (sample, ) | |
| if timestep in steps and i in layers: | |
| sample = optimize_feature(sample, flows, occs, correlation_matrix, | |
| intra_weight, iters, optimize_temporal = optimize_temporal) | |
| if saliency is not None: | |
| sample = warp_tensor(sample, flows, occs, saliency, 2) | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| if self.conv_norm_out: | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| ''' | |
| [HACK] return the output feature as well as the decoder features | |
| ''' | |
| if not return_dict: | |
| return (sample, ) + up_samples | |
| return UNet2DConditionOutput(sample=sample) | |
| return forward | |
| def apply_FRESCO_opt(pipe, steps = [], layers = [0,1,2,3], flows = None, occs = None, | |
| correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None): | |
| """ | |
| Apply FRESCO-based optimization to a StableDiffusionPipeline | |
| """ | |
| pipe.unet.forward = my_forward(pipe.unet, steps, layers, flows, occs, | |
| correlation_matrix, intra_weight, iters, optimize_temporal, saliency) | |
| def disable_FRESCO_opt(pipe): | |
| """ | |
| Disable the FRESCO-based optimization | |
| """ | |
| apply_FRESCO_opt(pipe) | |
| """ | |
| ===================================================================================== | |
| PART III - Prepare parameters for FRESCO-guided attention/optimization | |
| * get_intraframe_paras(): get parameters for spatial-guided attention/optimization | |
| * get_flow_and_interframe_paras(): get parameters for temporal-guided attention/optimization | |
| ===================================================================================== | |
| """ | |
| def get_intraframe_paras(pipe, imgs, frescoProc, | |
| prompt_embeds, do_classifier_free_guidance=True, seed=0): | |
| """ | |
| Get parameters for spatial-guided attention and optimization | |
| * perform one step denoising | |
| * collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn'] | |
| * compute the gram matrix of the normalized feature for spatial consistency loss | |
| """ | |
| noise_scheduler = pipe.scheduler | |
| timestep = noise_scheduler.timesteps[-1] | |
| device = pipe._execution_device | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| B, C, H, W = imgs.shape | |
| frescoProc.controller.disable_controller() | |
| disable_FRESCO_opt(pipe) | |
| frescoProc.controller.clear_store() | |
| frescoProc.controller.enable_store() | |
| latents = pipe.prepare_latents( | |
| B, | |
| pipe.unet.config.in_channels, | |
| H, | |
| W, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents = None, | |
| ) | |
| latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample() | |
| latents = noise_scheduler.add_noise(latent_x0, latents, timestep).detach() | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| model_output = pipe.unet( | |
| latent_model_input, | |
| timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=None, | |
| return_dict=False, | |
| ) | |
| frescoProc.controller.disable_store() | |
| # gram matrix of the normalized feature for spatial consistency loss | |
| correlation_matrix = [] | |
| for tmp in model_output[1:]: | |
| latent_vector = rearrange(tmp, "b c h w -> b (h w) c") | |
| latent_vector = latent_vector / ((latent_vector ** 2).sum(dim=2, keepdims=True) ** 0.5) | |
| attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2)) | |
| correlation_matrix += [attention_probs.detach().clone().to(torch.float32)] | |
| del attention_probs, latent_vector, tmp | |
| del model_output | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return correlation_matrix | |
| def get_flow_and_interframe_paras(flow_model, imgs, visualize_pipeline=False): | |
| """ | |
| Get parameters for temporal-guided attention and optimization | |
| * predict optical flow and occlusion mask | |
| * compute pixel index correspondence for FLATTEN | |
| """ | |
| images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda() | |
| imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) | |
| reshuffle_list = list(range(1,len(images)))+[0] | |
| results_dict = flow_model(images, images[reshuffle_list], attn_splits_list=[2], | |
| corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True) | |
| flow_pr = results_dict['flow_preds'][-1] # [2*B, 2, H, W] | |
| fwd_flows, bwd_flows = flow_pr.chunk(2) # [B, 2, H, W] | |
| fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W] | |
| warped_image1 = flow_warp(images, bwd_flows) | |
| bwd_occs = torch.clamp(bwd_occs + (abs(images[reshuffle_list]-warped_image1).mean(dim=1)>255*0.25).float(), 0 ,1) | |
| warped_image2 = flow_warp(images[reshuffle_list], fwd_flows) | |
| fwd_occs = torch.clamp(fwd_occs + (abs(images-warped_image2).mean(dim=1)>255*0.25).float(), 0 ,1) | |
| if visualize_pipeline: | |
| print('visualized occlusion masks based on optical flows') | |
| viz = torchvision.utils.make_grid(imgs_torch * (1-fwd_occs.unsqueeze(1)), len(images), 1) | |
| visualize(viz.cpu(), 90) | |
| viz = torchvision.utils.make_grid(imgs_torch[reshuffle_list] * (1-bwd_occs.unsqueeze(1)), len(images), 1) | |
| visualize(viz.cpu(), 90) | |
| attn_mask = [] | |
| for scale in [8.0, 16.0, 32.0]: | |
| bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1./scale, mode='bilinear') | |
| attn_mask += [torch.cat((bwd_occs_[0:1].reshape(1,-1)>-1, bwd_occs_.reshape(bwd_occs_.shape[0],-1)>0.5), dim=0)] | |
| fwd_mappings = [] | |
| bwd_mappings = [] | |
| interattn_masks = [] | |
| for scale in [8.0, 16.0]: | |
| fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale) | |
| fwd_mappings += [fwd_mapping] | |
| bwd_mappings += [bwd_mapping] | |
| interattn_masks += [interattn_mask] | |
| interattn_paras = {} | |
| interattn_paras['fwd_mappings'] = fwd_mappings | |
| interattn_paras['bwd_mappings'] = bwd_mappings | |
| interattn_paras['interattn_masks'] = interattn_masks | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras | |