Spaces:
Sleeping
Sleeping
File size: 22,930 Bytes
0a071aa f49b7f0 c8aa814 f49b7f0 c8aa814 0a071aa c8aa814 0a071aa f49b7f0 0a071aa f49b7f0 c8aa814 0a071aa f49b7f0 5c47c84 c8aa814 5c47c84 0a071aa 2eb592a 0a071aa 2eb592a 0a071aa c8aa814 0a071aa c8aa814 0a071aa c8aa814 0a071aa c8aa814 0a071aa 5c47c84 8695198 5c47c84 0a071aa 5c47c84 8695198 0a071aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import gradio as gr
import jax
import jax.numpy as jnp
from jax import random
import flax.linen as nn
from tokenizers import Tokenizer
from safetensors.flax import load_file
import json
import os
from typing import Any, Optional
import numpy as np
# ==============================================================================
# MODEL ARCHITECTURE (from your training code)
# ==============================================================================
class RMSNorm(nn.Module):
epsilon: float = 1e-5
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x):
x = x.astype(jnp.float32)
scale = self.param('scale', nn.initializers.ones, (x.shape[-1],))
variance = jnp.mean(jnp.square(x), axis=-1, keepdims=True)
x = x * jax.lax.rsqrt(variance + self.epsilon) * scale
return x.astype(self.dtype)
def precompute_yarn_freqs(dim: int, end: int, theta: float = 10000.0,
scale: float = 1.0, alpha: float = 1.0,
beta: float = 32.0, dtype=jnp.bfloat16):
freqs = 1.0 / (theta ** (jnp.arange(0, dim, 2, dtype=jnp.float32) / dim))
if scale > 1.0:
def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
return (dim * jnp.log(max_position_embeddings / (num_rotations * 2 * jnp.pi))) / (2 * jnp.log(base))
def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
low = jnp.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = jnp.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings))
return jnp.maximum(low, 0).astype(jnp.int32), jnp.minimum(high, dim - 1).astype(jnp.int32)
def yarn_linear_ramp_mask(min_val, max_val, dim):
if min_val == max_val:
max_val += 0.001
linear_func = (jnp.arange(dim, dtype=jnp.float32) - min_val) / (max_val - min_val)
return jnp.clip(linear_func, 0, 1)
low, high = yarn_find_correction_range(beta, alpha, dim, theta, int(end * scale))
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
freqs = freqs / ((1 - inv_freq_mask) * (scale - 1) + 1)
t = jnp.arange(end, dtype=jnp.float32)
freqs = jnp.outer(t, freqs)
mscale = 1.0
if scale > 1.0:
mscale = 0.1 * 1.0 * jnp.log(scale) + 1.0
cos = jnp.cos(freqs) * mscale
sin = jnp.sin(freqs) * mscale
return jnp.concatenate([cos, sin], axis=-1).astype(dtype), mscale
def apply_rotary_emb(xq, xk, freqs_cis, mscale=1.0):
def rotate_half(x):
x1, x2 = jnp.split(x, 2, axis=-1)
return jnp.concatenate([-x2, x1], axis=-1)
seq_len = xq.shape[2]
head_dim = xq.shape[3]
freqs = freqs_cis[:seq_len, :]
half_dim = head_dim // 2
cos = freqs[:, :half_dim]
sin = freqs[:, half_dim:]
cos = jnp.repeat(cos, 2, axis=-1)
sin = jnp.repeat(sin, 2, axis=-1)
cos = cos[None, None, :, :]
sin = sin[None, None, :, :]
xq_out = (xq * cos) + (rotate_half(xq) * sin)
xk_out = (xk * cos) + (rotate_half(xk) * sin)
return xq_out, xk_out
class DepthwiseSeparableConv1D(nn.Module):
channels: int
kernel_size: int = 3
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x):
depthwise = nn.Conv(
features=self.channels,
kernel_size=(self.kernel_size,),
feature_group_count=self.channels,
padding='SAME',
use_bias=False,
dtype=self.dtype,
name='depthwise'
)(x)
pointwise = nn.Conv(
features=self.channels,
kernel_size=(1,),
use_bias=False,
dtype=self.dtype,
name='pointwise'
)(depthwise)
return pointwise
class LocalContextCNN(nn.Module):
d_model: int
dropout: float
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, training: bool = False):
conv3 = DepthwiseSeparableConv1D(self.d_model, 3, self.dtype, name='conv3')(x)
conv5 = DepthwiseSeparableConv1D(self.d_model, 5, self.dtype, name='conv5')(x)
conv7 = DepthwiseSeparableConv1D(self.d_model, 7, self.dtype, name='conv7')(x)
gate = nn.Dense(self.d_model * 3, dtype=self.dtype, name='fusion_gate')(x)
gate = nn.sigmoid(gate)
g3, g5, g7 = jnp.split(gate, 3, axis=-1)
out = g3 * conv3 + g5 * conv5 + g7 * conv7
scale = self.param('layer_scale', nn.initializers.constant(1e-6), (self.d_model,))
out = out * scale
return nn.Dropout(self.dropout, deterministic=not training)(out)
class MinGRUCell(nn.Module):
hidden_size: int
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, h):
z = nn.Dense(self.hidden_size, use_bias=True, dtype=self.dtype, name='gate')(x)
h_tilde = nn.Dense(self.hidden_size, use_bias=True, dtype=self.dtype, name='candidate')(x)
z = nn.sigmoid(z)
h_tilde = nn.tanh(h_tilde)
h_new = (1 - z) * h + z * h_tilde
return h_new
class BidirectionalMinGRU(nn.Module):
hidden_size: int
dropout: float
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, training: bool = False):
batch_size, seq_len, d_model = x.shape
x_proj = nn.Dense(self.hidden_size, dtype=self.dtype, name='input_proj')(x)
class ScanRNNCell(nn.Module):
hidden_size: int
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, h, x_t):
cell = MinGRUCell(self.hidden_size, dtype=self.dtype)
h_new = cell(x_t, h)
return h_new, h_new
ForwardScanner = nn.scan(
ScanRNNCell,
variable_broadcast='params',
split_rngs={'params': False},
in_axes=1,
out_axes=1
)
h0_forward = jnp.zeros((batch_size, self.hidden_size), dtype=self.dtype)
_, h_forward = ForwardScanner(
hidden_size=self.hidden_size,
dtype=self.dtype,
name='forward_cell'
)(h0_forward, x_proj)
BackwardScanner = nn.scan(
ScanRNNCell,
variable_broadcast='params',
split_rngs={'params': False},
in_axes=1,
out_axes=1
)
h0_backward = jnp.zeros((batch_size, self.hidden_size), dtype=self.dtype)
x_proj_reversed = jnp.flip(x_proj, axis=1)
_, h_backward = BackwardScanner(
hidden_size=self.hidden_size,
dtype=self.dtype,
name='backward_cell'
)(h0_backward, x_proj_reversed)
h_backward = jnp.flip(h_backward, axis=1)
h_bi = jnp.concatenate([h_forward, h_backward], axis=-1)
out = nn.Dense(d_model, dtype=self.dtype, name='output_proj')(h_bi)
scale = self.param('layer_scale', nn.initializers.constant(1e-6), (d_model,))
out = out * scale
return nn.Dropout(self.dropout, deterministic=not training)(out)
class GroupedQueryAttention(nn.Module):
d_model: int
n_heads: int
n_kv_heads: int
dropout: float
freqs_cis: jnp.ndarray
yarn_mscale: float
alibi_bias: Optional[jnp.ndarray]
alibi_weight: float
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, mask, training: bool = False):
B, T, D = x.shape
head_dim = self.d_model // self.n_heads
n_rep = self.n_heads // self.n_kv_heads
q = nn.Dense(self.d_model, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='q_proj')(x)
kv_dim = self.d_model * self.n_kv_heads // self.n_heads
k = nn.Dense(kv_dim, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='k_proj')(x)
v = nn.Dense(kv_dim, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='v_proj')(x)
q = q.reshape(B, T, self.n_heads, head_dim).transpose(0, 2, 1, 3)
k = k.reshape(B, T, self.n_kv_heads, head_dim).transpose(0, 2, 1, 3)
v = v.reshape(B, T, self.n_kv_heads, head_dim).transpose(0, 2, 1, 3)
k = jnp.repeat(k, n_rep, axis=1)
v = jnp.repeat(v, n_rep, axis=1)
q, k = apply_rotary_emb(q, k, self.freqs_cis, self.yarn_mscale)
scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) / jnp.sqrt(head_dim).astype(self.dtype)
if self.alibi_bias is not None:
scores = scores * (1 - self.alibi_weight)
alibi = self.alibi_bias[:, :, :T, :T]
scores = scores + (alibi * self.alibi_weight)
scores = scores + mask
attn_weights = nn.softmax(scores, axis=-1)
attn_weights = nn.Dropout(self.dropout, deterministic=not training)(attn_weights)
attn_out = jnp.matmul(attn_weights, v)
attn_out = attn_out.transpose(0, 2, 1, 3).reshape(B, T, D)
out = nn.Dense(self.d_model, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='o_proj')(attn_out)
return nn.Dropout(self.dropout, deterministic=not training)(out)
class SwiGLU(nn.Module):
d_model: int
ff_dim: int
dropout: float
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, training: bool = False):
gate = nn.Dense(self.ff_dim, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='gate_proj')(x)
up = nn.Dense(self.ff_dim, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='up_proj')(x)
hidden = nn.silu(gate) * up
out = nn.Dense(self.d_model, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='down_proj')(hidden)
return nn.Dropout(self.dropout, deterministic=not training)(out)
class HybridTransformerBlock(nn.Module):
d_model: int
n_heads: int
n_kv_heads: int
ff_dim: int
dropout: float
freqs_cis: jnp.ndarray
yarn_mscale: float
alibi_bias: Optional[jnp.ndarray]
alibi_weight: float
layer_idx: int
layer_drop_prob: float = 0.0
use_cnn: bool = True
use_rnn: bool = True
rnn_hidden: int = 512
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, x, mask, training: bool = False):
scale = 1.0
if self.use_rnn:
h_rnn = RMSNorm(dtype=self.dtype, name='rnn_norm')(x)
h_rnn = BidirectionalMinGRU(
self.rnn_hidden, self.dropout, dtype=self.dtype, name='bidirectional_rnn'
)(h_rnn, training)
x = x + h_rnn * scale
if self.use_cnn:
h_cnn = RMSNorm(dtype=self.dtype, name='cnn_norm')(x)
h_cnn = LocalContextCNN(
self.d_model, self.dropout, dtype=self.dtype, name='local_cnn'
)(h_cnn, training)
x = x + h_cnn * scale
h = RMSNorm(dtype=self.dtype, name='attn_norm')(x)
h = GroupedQueryAttention(
self.d_model, self.n_heads, self.n_kv_heads, self.dropout,
self.freqs_cis, self.yarn_mscale, self.alibi_bias,
self.alibi_weight, dtype=self.dtype, name='attn'
)(h, mask, training)
x = x + h * scale
h = RMSNorm(dtype=self.dtype, name='ffn_norm')(x)
h = SwiGLU(self.d_model, self.ff_dim, self.dropout,
dtype=self.dtype, name='ffn')(h, training)
x = x + h * scale
return x
class SAM1HybridModel(nn.Module):
vocab_size: int
d_model: int
n_layers: int
n_heads: int
n_kv_heads: int
ff_dim: int
max_len: int
dropout: float = 0.1
layer_drop_prob: float = 0.05
rope_theta: float = 10000.0
yarn_scale: float = 1.0
yarn_alpha: float = 1.0
yarn_beta: float = 32.0
use_alibi: bool = False
alibi_weight: float = 0.3
use_cnn: bool = True
use_rnn: bool = True
rnn_hidden: int = 384
dtype: Any = jnp.bfloat16
@nn.compact
def __call__(self, input_ids, training: bool = False):
head_dim = self.d_model // self.n_heads
freqs_cis, yarn_mscale = precompute_yarn_freqs(
head_dim, self.max_len, self.rope_theta,
self.yarn_scale, self.yarn_alpha, self.yarn_beta, self.dtype
)
alibi_bias = None
x = nn.Embed(self.vocab_size, self.d_model,
embedding_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='embed_tokens')(input_ids)
seq_len = input_ids.shape[1]
mask = jnp.tril(jnp.ones((seq_len, seq_len)))
mask = jnp.where(mask == 0, -1e9, 0.0).astype(self.dtype)
for i in range(self.n_layers):
use_cnn_layer = self.use_cnn and (i % 3 == 0)
use_rnn_layer = self.use_rnn and (i % 4 == 0)
x = HybridTransformerBlock(
self.d_model, self.n_heads, self.n_kv_heads, self.ff_dim,
self.dropout, freqs_cis, yarn_mscale, alibi_bias,
self.alibi_weight, i, self.layer_drop_prob,
use_cnn_layer, use_rnn_layer, self.rnn_hidden,
dtype=self.dtype, name=f'layers_{i}'
)(x, mask, training)
x = RMSNorm(dtype=self.dtype, name='norm')(x)
logits = nn.Dense(self.vocab_size, use_bias=False,
kernel_init=nn.initializers.normal(stddev=0.02),
dtype=self.dtype, name='lm_head')(x)
return logits
# ==============================================================================
# MODEL LOADING & GENERATION
# ==============================================================================
class ModelWrapper:
def __init__(self, model_path: str):
print("π§ Loading model...")
# Load config
with open(os.path.join(model_path, "config.json"), 'r') as f:
config = json.load(f)
self.vocab_size = config['vocab_size']
self.d_model = config['d_model']
self.n_layers = config['n_layers']
self.n_heads = config['n_heads']
self.n_kv_heads = config['n_kv_heads']
self.ff_dim = int(self.d_model * 2.5)
self.max_len = config['max_len']
self.use_cnn = config.get('use_cnn', True)
self.use_rnn = config.get('use_rnn', True)
self.rnn_hidden = config.get('rnn_hidden', 384)
# Load tokenizer
self.tokenizer = Tokenizer.from_file(os.path.join(model_path, "tokenizer.json"))
# Initialize model
self.model = SAM1HybridModel(
vocab_size=self.vocab_size,
d_model=self.d_model,
n_layers=self.n_layers,
n_heads=self.n_heads,
n_kv_heads=self.n_kv_heads,
ff_dim=self.ff_dim,
max_len=self.max_len,
use_cnn=self.use_cnn,
use_rnn=self.use_rnn,
rnn_hidden=self.rnn_hidden,
dtype=jnp.bfloat16
)
# Load weights
flat_params = load_file(os.path.join(model_path, "model.safetensors"))
# Unflatten parameters
def unflatten_dict(flat_dict, sep='.'):
result = {}
for key, value in flat_dict.items():
parts = key.split(sep)
d = result
for part in parts[:-1]:
if part not in d:
d[part] = {}
d = d[part]
d[parts[-1]] = jnp.array(value)
return result
self.params = {'params': unflatten_dict(flat_params)}
print(f"β
Model loaded: {self.d_model}d Γ {self.n_layers}L Γ {self.n_heads}H")
def generate_stream(self, prompt: str, max_new_tokens: int = 200,
temperature: float = 0.8, top_k: int = 50, top_p: float = 0.9):
"""Generator that yields tokens one at a time for streaming"""
# Format prompt in ChatML format
if not prompt.startswith("<|im_start|>"):
prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
else:
if "<|im_start|>assistant" not in prompt:
prompt = prompt + "<|im_start|>assistant\n"
# Tokenize
encoding = self.tokenizer.encode(prompt)
input_ids = jnp.array(encoding.ids)[None, :]
if input_ids.shape[1] > self.max_len:
input_ids = input_ids[:, -self.max_len:]
rng = random.PRNGKey(42)
generated_ids = input_ids
response_text = ""
# Generate tokens
for _ in range(max_new_tokens):
logits = self.model.apply(self.params, generated_ids, training=False)
next_logits = logits[0, -1, :] / temperature
# Top-k filtering
top_k_logits, top_k_indices = jax.lax.top_k(next_logits, top_k)
# Top-p (nucleus) filtering
sorted_logits = jnp.sort(top_k_logits)[::-1]
sorted_indices = jnp.argsort(top_k_logits)[::-1]
cumsum_probs = jnp.cumsum(nn.softmax(sorted_logits))
mask = cumsum_probs <= top_p
mask = jnp.concatenate([jnp.array([True]), mask[:-1]])
filtered_logits = jnp.where(mask, sorted_logits, -1e9)
# Sample
rng, sample_rng = random.split(rng)
next_token_idx = random.categorical(sample_rng, filtered_logits)
next_token = top_k_indices[sorted_indices[next_token_idx]][None, None]
generated_ids = jnp.concatenate([generated_ids, next_token], axis=1)
# Decode the new token
token_id = int(next_token[0, 0])
# Stop on EOS or end tokens
if token_id in [
self.tokenizer.token_to_id("<|endoftext|>"),
self.tokenizer.token_to_id("<|im_end|>")
]:
break
# Decode and yield the token
token_text = self.tokenizer.decode([token_id])
response_text += token_text
yield response_text
def generate(self, prompt: str, max_new_tokens: int = 200,
temperature: float = 0.8, top_k: int = 50, top_p: float = 0.9):
"""Non-streaming generation (returns full response)"""
response = ""
for partial_response in self.generate_stream(prompt, max_new_tokens, temperature, top_k, top_p):
response = partial_response
return response
# ==============================================================================
# GRADIO INTERFACE
# ==============================================================================
# Download and load model from HuggingFace Hub
from huggingface_hub import snapshot_download
print("π₯ Downloading model from HuggingFace Hub...")
model_path = snapshot_download(
repo_id="Smilyai-labs/MixSam-exp",
repo_type="model",
local_dir="./model_cache"
)
print(f"β
Model downloaded to: {model_path}")
# Load model
model = ModelWrapper(model_path)
def chat_fn(message, history, temperature, top_k, top_p, max_tokens):
# Build conversation context in ChatML format
conversation = ""
for user_msg, bot_msg in history:
conversation += f"<|im_start|>user\n{user_msg}<|im_end|>\n<|im_start|>assistant\n{bot_msg}<|im_end|>\n"
# Add current message
conversation += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
# Stream response token by token
partial_response = ""
for response in model.generate_stream(
conversation,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p
):
partial_response = response
# Yield the full history + current streaming message
yield history + [[message, partial_response]]
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ SAM1 Hybrid Chat
### Transformer + CNN + RNN Architecture
Chat with SAM1, a custom hybrid language model combining:
- π· **Transformer** attention (GQA + YARN + RoPE)
- πΆ **CNN** for local context (multi-scale convolutions)
- π΅ **RNN** for sequential modeling (bidirectional MinGRU)
""")
chatbot = gr.Chatbot(height=500, show_copy_button=True)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
scale=4
)
submit = gr.Button("Send", scale=1, variant="primary")
with gr.Accordion("βοΈ Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=0.8, label="Temperature", step=0.1)
top_k = gr.Slider(1, 100, value=50, label="Top-K", step=1)
with gr.Row():
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top-P", step=0.05)
max_tokens = gr.Slider(50, 500, value=200, label="Max Tokens", step=10)
clear = gr.Button("ποΈ Clear Chat")
# Event handlers
msg.submit(
chat_fn,
inputs=[msg, chatbot, temperature, top_k, top_p, max_tokens],
outputs=chatbot
).then(lambda: "", None, msg)
submit.click(
chat_fn,
inputs=[msg, chatbot, temperature, top_k, top_p, max_tokens],
outputs=chatbot
).then(lambda: "", None, msg)
clear.click(lambda: None, None, chatbot, queue=False)
gr.Markdown("""
---
**Model Details:**
- Architecture: SAM1 Hybrid (Custom)
- Parameters: ~600M
- Context Length: 1024 tokens
- Format: `User: {query} Sam: {response}` (no newlines)
**Tips:**
- Lower temperature (0.3-0.5) for focused responses
- Higher temperature (0.8-1.2) for creative responses
- Adjust top-k/top-p for response diversity
""")
if __name__ == "__main__":
demo.queue().launch() |