Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# HuggingFace Space - Sam Model Chat Interface with Streaming
|
| 3 |
+
# ==============================================================================
|
| 4 |
+
# Loads model directly from HuggingFace Hub: Smilyai-labs/Sam-1-large
|
| 5 |
+
# ==============================================================================
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
import keras
|
| 10 |
+
import numpy as np
|
| 11 |
+
from tokenizers import Tokenizer
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# ==============================================================================
|
| 16 |
+
# Model Configuration
|
| 17 |
+
# ==============================================================================
|
| 18 |
+
|
| 19 |
+
MODEL_REPO = "Smilyai-labs/Sam-1-large" # Your HuggingFace model repo
|
| 20 |
+
MAX_NEW_TOKENS = 512
|
| 21 |
+
TEMPERATURE = 0.8
|
| 22 |
+
TOP_P = 0.9
|
| 23 |
+
TOP_K = 50
|
| 24 |
+
|
| 25 |
+
# ==============================================================================
|
| 26 |
+
# Custom Keras Layers (Must match training code)
|
| 27 |
+
# ==============================================================================
|
| 28 |
+
|
| 29 |
+
@keras.saving.register_keras_serializable()
|
| 30 |
+
class RotaryEmbedding(keras.layers.Layer):
|
| 31 |
+
def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
|
| 32 |
+
super().__init__(**kwargs)
|
| 33 |
+
self.dim = dim
|
| 34 |
+
self.max_len = max_len
|
| 35 |
+
self.theta = theta
|
| 36 |
+
self.built_cache = False
|
| 37 |
+
|
| 38 |
+
def build(self, input_shape):
|
| 39 |
+
if not self.built_cache:
|
| 40 |
+
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
|
| 41 |
+
t = tf.range(self.max_len, dtype=tf.float32)
|
| 42 |
+
freqs = tf.einsum("i,j->ij", t, inv_freq)
|
| 43 |
+
emb = tf.concat([freqs, freqs], axis=-1)
|
| 44 |
+
|
| 45 |
+
self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
|
| 46 |
+
self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
|
| 47 |
+
self.built_cache = True
|
| 48 |
+
|
| 49 |
+
super().build(input_shape)
|
| 50 |
+
|
| 51 |
+
def rotate_half(self, x):
|
| 52 |
+
x1, x2 = tf.split(x, 2, axis=-1)
|
| 53 |
+
return tf.concat([-x2, x1], axis=-1)
|
| 54 |
+
|
| 55 |
+
def call(self, q, k):
|
| 56 |
+
seq_len = tf.shape(q)[2]
|
| 57 |
+
dtype = q.dtype
|
| 58 |
+
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 59 |
+
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 60 |
+
|
| 61 |
+
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
|
| 62 |
+
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
|
| 63 |
+
|
| 64 |
+
return q_rotated, k_rotated
|
| 65 |
+
|
| 66 |
+
def get_config(self):
|
| 67 |
+
config = super().get_config()
|
| 68 |
+
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 69 |
+
return config
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@keras.saving.register_keras_serializable()
|
| 73 |
+
class RMSNorm(keras.layers.Layer):
|
| 74 |
+
def __init__(self, epsilon=1e-5, **kwargs):
|
| 75 |
+
super().__init__(**kwargs)
|
| 76 |
+
self.epsilon = epsilon
|
| 77 |
+
|
| 78 |
+
def build(self, input_shape):
|
| 79 |
+
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
|
| 80 |
+
|
| 81 |
+
def call(self, x):
|
| 82 |
+
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
|
| 83 |
+
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
|
| 84 |
+
|
| 85 |
+
def get_config(self):
|
| 86 |
+
config = super().get_config()
|
| 87 |
+
config.update({"epsilon": self.epsilon})
|
| 88 |
+
return config
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@keras.saving.register_keras_serializable()
|
| 92 |
+
class TransformerBlock(keras.layers.Layer):
|
| 93 |
+
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
|
| 94 |
+
super().__init__(**kwargs)
|
| 95 |
+
self.d_model = d_model
|
| 96 |
+
self.n_heads = n_heads
|
| 97 |
+
self.ff_dim = ff_dim
|
| 98 |
+
self.dropout_rate = dropout
|
| 99 |
+
self.max_len = max_len
|
| 100 |
+
self.rope_theta = rope_theta
|
| 101 |
+
self.head_dim = d_model // n_heads
|
| 102 |
+
self.layer_idx = layer_idx
|
| 103 |
+
|
| 104 |
+
self.pre_attn_norm = RMSNorm()
|
| 105 |
+
self.pre_ffn_norm = RMSNorm()
|
| 106 |
+
|
| 107 |
+
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
|
| 108 |
+
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
|
| 109 |
+
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
|
| 110 |
+
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
|
| 111 |
+
|
| 112 |
+
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
| 113 |
+
|
| 114 |
+
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
|
| 115 |
+
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
|
| 116 |
+
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
|
| 117 |
+
|
| 118 |
+
self.dropout = keras.layers.Dropout(dropout)
|
| 119 |
+
|
| 120 |
+
def call(self, x, training=None):
|
| 121 |
+
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 122 |
+
dtype = x.dtype
|
| 123 |
+
|
| 124 |
+
res = x
|
| 125 |
+
y = self.pre_attn_norm(x)
|
| 126 |
+
|
| 127 |
+
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 128 |
+
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 129 |
+
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 130 |
+
|
| 131 |
+
q, k = self.rope(q, k)
|
| 132 |
+
|
| 133 |
+
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 134 |
+
|
| 135 |
+
mask = tf.where(
|
| 136 |
+
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
|
| 137 |
+
tf.constant(-1e9, dtype=dtype),
|
| 138 |
+
tf.constant(0.0, dtype=dtype)
|
| 139 |
+
)
|
| 140 |
+
scores += mask
|
| 141 |
+
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
|
| 142 |
+
|
| 143 |
+
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 144 |
+
x = res + self.dropout(self.out_proj(attn), training=training)
|
| 145 |
+
|
| 146 |
+
res = x
|
| 147 |
+
y = self.pre_ffn_norm(x)
|
| 148 |
+
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
| 149 |
+
|
| 150 |
+
return res + self.dropout(ffn, training=training)
|
| 151 |
+
|
| 152 |
+
def get_config(self):
|
| 153 |
+
config = super().get_config()
|
| 154 |
+
config.update({
|
| 155 |
+
"d_model": self.d_model,
|
| 156 |
+
"n_heads": self.n_heads,
|
| 157 |
+
"ff_dim": self.ff_dim,
|
| 158 |
+
"dropout": self.dropout_rate,
|
| 159 |
+
"max_len": self.max_len,
|
| 160 |
+
"rope_theta": self.rope_theta,
|
| 161 |
+
"layer_idx": self.layer_idx
|
| 162 |
+
})
|
| 163 |
+
return config
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@keras.saving.register_keras_serializable()
|
| 167 |
+
class SAM1Model(keras.Model):
|
| 168 |
+
def __init__(self, **kwargs):
|
| 169 |
+
super().__init__()
|
| 170 |
+
if 'config' in kwargs and isinstance(kwargs['config'], dict):
|
| 171 |
+
self.cfg = kwargs['config']
|
| 172 |
+
elif 'vocab_size' in kwargs:
|
| 173 |
+
self.cfg = kwargs
|
| 174 |
+
else:
|
| 175 |
+
self.cfg = kwargs.get('cfg', kwargs)
|
| 176 |
+
|
| 177 |
+
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
|
| 178 |
+
|
| 179 |
+
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
|
| 180 |
+
block_args = {
|
| 181 |
+
'd_model': self.cfg['d_model'],
|
| 182 |
+
'n_heads': self.cfg['n_heads'],
|
| 183 |
+
'ff_dim': ff_dim,
|
| 184 |
+
'dropout': self.cfg['dropout'],
|
| 185 |
+
'max_len': self.cfg['max_len'],
|
| 186 |
+
'rope_theta': self.cfg['rope_theta']
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
self.blocks = []
|
| 190 |
+
for i in range(self.cfg['n_layers']):
|
| 191 |
+
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
|
| 192 |
+
self.blocks.append(block)
|
| 193 |
+
|
| 194 |
+
self.norm = RMSNorm(name="final_norm")
|
| 195 |
+
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
|
| 196 |
+
|
| 197 |
+
def call(self, input_ids, training=None):
|
| 198 |
+
x = self.embed(input_ids)
|
| 199 |
+
|
| 200 |
+
for block in self.blocks:
|
| 201 |
+
x = block(x, training=training)
|
| 202 |
+
|
| 203 |
+
return self.lm_head(self.norm(x))
|
| 204 |
+
|
| 205 |
+
def get_config(self):
|
| 206 |
+
base_config = super().get_config()
|
| 207 |
+
base_config['config'] = self.cfg
|
| 208 |
+
return base_config
|
| 209 |
+
|
| 210 |
+
# ==============================================================================
|
| 211 |
+
# Load Model and Tokenizer from HuggingFace Hub
|
| 212 |
+
# ==============================================================================
|
| 213 |
+
|
| 214 |
+
print("๐ฅ Loading Sam model from HuggingFace Hub...")
|
| 215 |
+
print(f" Repository: {MODEL_REPO}")
|
| 216 |
+
|
| 217 |
+
try:
|
| 218 |
+
# Download model file
|
| 219 |
+
print("๐ฅ Downloading model.keras...")
|
| 220 |
+
model_path = hf_hub_download(
|
| 221 |
+
repo_id=MODEL_REPO,
|
| 222 |
+
filename="model.keras",
|
| 223 |
+
cache_dir="./model_cache"
|
| 224 |
+
)
|
| 225 |
+
print(f"โ
Model downloaded to: {model_path}")
|
| 226 |
+
|
| 227 |
+
# Download tokenizer
|
| 228 |
+
print("๐ฅ Downloading tokenizer.json...")
|
| 229 |
+
tokenizer_path = hf_hub_download(
|
| 230 |
+
repo_id=MODEL_REPO,
|
| 231 |
+
filename="tokenizer.json",
|
| 232 |
+
cache_dir="./model_cache"
|
| 233 |
+
)
|
| 234 |
+
print(f"โ
Tokenizer downloaded to: {tokenizer_path}")
|
| 235 |
+
|
| 236 |
+
# Load tokenizer
|
| 237 |
+
tokenizer = Tokenizer.from_file(tokenizer_path)
|
| 238 |
+
eos_token = "<|endoftext|>"
|
| 239 |
+
eos_token_id = tokenizer.token_to_id(eos_token)
|
| 240 |
+
print(f"โ
Tokenizer loaded (vocab_size={tokenizer.get_vocab_size()})")
|
| 241 |
+
|
| 242 |
+
# Load model
|
| 243 |
+
print("๐ Loading model into memory...")
|
| 244 |
+
model = keras.models.load_model(model_path)
|
| 245 |
+
print(f"โ
Model loaded successfully!")
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"โ Error loading model: {e}")
|
| 249 |
+
print("\n๐ก Troubleshooting:")
|
| 250 |
+
print("1. Make sure the model repo exists: https://huggingface.co/Smilyai-labs/Sam-1-large")
|
| 251 |
+
print("2. Check that model.keras and tokenizer.json are in the repo")
|
| 252 |
+
print("3. If repo is private, you may need to login: huggingface-cli login")
|
| 253 |
+
raise
|
| 254 |
+
|
| 255 |
+
# ==============================================================================
|
| 256 |
+
# Generation Functions
|
| 257 |
+
# ==============================================================================
|
| 258 |
+
|
| 259 |
+
def sample_token(logits, temperature=1.0, top_p=0.9, top_k=50):
|
| 260 |
+
"""Sample next token with temperature, top-p, and top-k"""
|
| 261 |
+
logits = logits / temperature
|
| 262 |
+
|
| 263 |
+
# Top-k filtering
|
| 264 |
+
if top_k > 0:
|
| 265 |
+
top_k_logits, top_k_indices = tf.nn.top_k(logits, k=min(top_k, logits.shape[-1]))
|
| 266 |
+
logits = tf.where(
|
| 267 |
+
tf.reduce_any(tf.equal(tf.expand_dims(tf.range(logits.shape[-1]), 0),
|
| 268 |
+
tf.expand_dims(top_k_indices, -1)), axis=1),
|
| 269 |
+
logits,
|
| 270 |
+
tf.fill(logits.shape, -1e10)
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# Top-p (nucleus) filtering
|
| 274 |
+
if top_p < 1.0:
|
| 275 |
+
sorted_logits = tf.sort(logits, direction='DESCENDING')
|
| 276 |
+
sorted_probs = tf.nn.softmax(sorted_logits)
|
| 277 |
+
cumsum_probs = tf.cumsum(sorted_probs)
|
| 278 |
+
|
| 279 |
+
sorted_indices_to_remove = cumsum_probs > top_p
|
| 280 |
+
sorted_indices_to_remove = tf.concat([
|
| 281 |
+
[False],
|
| 282 |
+
sorted_indices_to_remove[:-1]
|
| 283 |
+
], axis=0)
|
| 284 |
+
|
| 285 |
+
sorted_indices = tf.argsort(logits, direction='DESCENDING')
|
| 286 |
+
indices_to_remove = tf.gather(sorted_indices_to_remove, tf.argsort(sorted_indices))
|
| 287 |
+
|
| 288 |
+
logits = tf.where(indices_to_remove, -1e10, logits)
|
| 289 |
+
|
| 290 |
+
# Sample
|
| 291 |
+
probs = tf.nn.softmax(logits)
|
| 292 |
+
next_token = tf.random.categorical(tf.math.log(probs[None, :]), num_samples=1)[0, 0]
|
| 293 |
+
|
| 294 |
+
return next_token.numpy()
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def generate_stream(prompt, max_new_tokens=512, temperature=0.8, top_p=0.9, top_k=50):
|
| 298 |
+
"""Generate text with streaming (yields tokens as they're generated)"""
|
| 299 |
+
|
| 300 |
+
# Format prompt
|
| 301 |
+
formatted_prompt = f"User: {prompt}\nSam:"
|
| 302 |
+
|
| 303 |
+
# Tokenize
|
| 304 |
+
encoding = tokenizer.encode(formatted_prompt)
|
| 305 |
+
input_ids = np.array([encoding.ids], dtype=np.int32)
|
| 306 |
+
|
| 307 |
+
# Check if prompt is too long
|
| 308 |
+
if input_ids.shape[1] > 1000:
|
| 309 |
+
yield "โ Error: Prompt is too long (max 1000 tokens)"
|
| 310 |
+
return
|
| 311 |
+
|
| 312 |
+
generated_text = ""
|
| 313 |
+
|
| 314 |
+
for _ in range(max_new_tokens):
|
| 315 |
+
# Get logits
|
| 316 |
+
logits = model(input_ids, training=False)
|
| 317 |
+
next_token_logits = logits[0, -1, :].numpy()
|
| 318 |
+
|
| 319 |
+
# Sample next token
|
| 320 |
+
next_token = sample_token(next_token_logits, temperature, top_p, top_k)
|
| 321 |
+
|
| 322 |
+
# Stop if EOS
|
| 323 |
+
if next_token == eos_token_id:
|
| 324 |
+
break
|
| 325 |
+
|
| 326 |
+
# Decode token
|
| 327 |
+
token_text = tokenizer.decode([next_token])
|
| 328 |
+
generated_text += token_text
|
| 329 |
+
|
| 330 |
+
# Yield for streaming
|
| 331 |
+
yield generated_text
|
| 332 |
+
|
| 333 |
+
# Append to input
|
| 334 |
+
input_ids = np.concatenate([input_ids, [[next_token]]], axis=1)
|
| 335 |
+
|
| 336 |
+
# Stop if we hit max length
|
| 337 |
+
if input_ids.shape[1] >= 1024:
|
| 338 |
+
break
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def chat_interface(message, history, temperature, top_p, top_k, max_tokens):
|
| 342 |
+
"""Gradio chat interface with streaming"""
|
| 343 |
+
|
| 344 |
+
if not message.strip():
|
| 345 |
+
return ""
|
| 346 |
+
|
| 347 |
+
# Build conversation context from history (last 3 turns to save tokens)
|
| 348 |
+
conversation = ""
|
| 349 |
+
recent_history = history[-3:] if len(history) > 3 else history
|
| 350 |
+
|
| 351 |
+
for user_msg, bot_msg in recent_history:
|
| 352 |
+
conversation += f"User: {user_msg}\nSam: {bot_msg}\n"
|
| 353 |
+
|
| 354 |
+
# Add current message
|
| 355 |
+
full_prompt = conversation + message if conversation else message
|
| 356 |
+
|
| 357 |
+
# Generate with streaming
|
| 358 |
+
for response_chunk in generate_stream(
|
| 359 |
+
full_prompt,
|
| 360 |
+
max_new_tokens=max_tokens,
|
| 361 |
+
temperature=temperature,
|
| 362 |
+
top_p=top_p,
|
| 363 |
+
top_k=top_k
|
| 364 |
+
):
|
| 365 |
+
yield response_chunk
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# ==============================================================================
|
| 369 |
+
# Gradio Interface
|
| 370 |
+
# ==============================================================================
|
| 371 |
+
|
| 372 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Chat with Sam") as demo:
|
| 373 |
+
gr.Markdown("""
|
| 374 |
+
# ๐ค Chat with Sam
|
| 375 |
+
|
| 376 |
+
**Sam** is a fine-tuned language model trained on math, code, reasoning, and conversational data.
|
| 377 |
+
|
| 378 |
+
### โจ Capabilities:
|
| 379 |
+
- ๐งฎ **Math**: Solve arithmetic and word problems (trained on GSM8K)
|
| 380 |
+
- ๐ป **Code**: Write Python, JavaScript, and more (trained on CodeAlpaca)
|
| 381 |
+
- ๐ค **Reasoning**: Show step-by-step thinking with `<think>` tags
|
| 382 |
+
- ๐ฌ **Chat**: Natural conversations on any topic
|
| 383 |
+
|
| 384 |
+
### ๐ Model Info:
|
| 385 |
+
- **Architecture**: 768d, 16 layers, 12 heads (~100M parameters)
|
| 386 |
+
- **Context**: 1024 tokens
|
| 387 |
+
- **Training**: TPU v5e-8 on multi-dataset mix
|
| 388 |
+
""")
|
| 389 |
+
|
| 390 |
+
chatbot = gr.Chatbot(
|
| 391 |
+
label="๐ฌ Conversation",
|
| 392 |
+
height=450,
|
| 393 |
+
show_copy_button=True,
|
| 394 |
+
avatar_images=(None, "๐ค"),
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with gr.Row():
|
| 398 |
+
msg = gr.Textbox(
|
| 399 |
+
label="Your message",
|
| 400 |
+
placeholder="Ask Sam anything... (e.g., 'What is 127 * 43?' or 'Write a function to sort a list')",
|
| 401 |
+
lines=2,
|
| 402 |
+
scale=4,
|
| 403 |
+
autofocus=True
|
| 404 |
+
)
|
| 405 |
+
submit = gr.Button("Send ๐", scale=1, variant="primary")
|
| 406 |
+
|
| 407 |
+
with gr.Accordion("โ๏ธ Generation Settings", open=False):
|
| 408 |
+
with gr.Row():
|
| 409 |
+
temperature = gr.Slider(
|
| 410 |
+
minimum=0.1,
|
| 411 |
+
maximum=2.0,
|
| 412 |
+
value=TEMPERATURE,
|
| 413 |
+
step=0.1,
|
| 414 |
+
label="Temperature",
|
| 415 |
+
info="Higher = more creative/random"
|
| 416 |
+
)
|
| 417 |
+
top_p = gr.Slider(
|
| 418 |
+
minimum=0.1,
|
| 419 |
+
maximum=1.0,
|
| 420 |
+
value=TOP_P,
|
| 421 |
+
step=0.05,
|
| 422 |
+
label="Top-p",
|
| 423 |
+
info="Nucleus sampling threshold"
|
| 424 |
+
)
|
| 425 |
+
with gr.Row():
|
| 426 |
+
top_k = gr.Slider(
|
| 427 |
+
minimum=1,
|
| 428 |
+
maximum=100,
|
| 429 |
+
value=TOP_K,
|
| 430 |
+
step=1,
|
| 431 |
+
label="Top-k",
|
| 432 |
+
info="Vocabulary size limit"
|
| 433 |
+
)
|
| 434 |
+
max_tokens = gr.Slider(
|
| 435 |
+
minimum=50,
|
| 436 |
+
maximum=512,
|
| 437 |
+
value=MAX_NEW_TOKENS,
|
| 438 |
+
step=50,
|
| 439 |
+
label="Max tokens",
|
| 440 |
+
info="Maximum response length"
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
with gr.Row():
|
| 444 |
+
clear = gr.Button("๐๏ธ Clear Chat")
|
| 445 |
+
|
| 446 |
+
with gr.Accordion("๐ก Example Prompts", open=False):
|
| 447 |
+
gr.Examples(
|
| 448 |
+
examples=[
|
| 449 |
+
["What is 127 * 43?"],
|
| 450 |
+
["Write a Python function to reverse a string"],
|
| 451 |
+
["Explain how photosynthesis works"],
|
| 452 |
+
["What's the capital of France?"],
|
| 453 |
+
["Write a haiku about coding"],
|
| 454 |
+
["How do I sort a list in Python?"],
|
| 455 |
+
],
|
| 456 |
+
inputs=msg,
|
| 457 |
+
label="Click to try:"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
gr.Markdown("""
|
| 461 |
+
---
|
| 462 |
+
### ๐ Tips:
|
| 463 |
+
- Sam uses conversational format: `User: ... Sam: ...`
|
| 464 |
+
- Watch for `<think>` tags showing reasoning process
|
| 465 |
+
- Adjust temperature for more creative (higher) or focused (lower) responses
|
| 466 |
+
- Model remembers last 3 conversation turns for context
|
| 467 |
+
|
| 468 |
+
### ๐ Links:
|
| 469 |
+
- Model: [Smilyai-labs/Sam-1-large](https://huggingface.co/Smilyai-labs/Sam-1-large)
|
| 470 |
+
- Training: TPU v5e-8 on Kaggle
|
| 471 |
+
- Framework: TensorFlow/Keras
|
| 472 |
+
""")
|
| 473 |
+
|
| 474 |
+
# Event handlers
|
| 475 |
+
msg.submit(
|
| 476 |
+
chat_interface,
|
| 477 |
+
inputs=[msg, chatbot, temperature, top_p, top_k, max_tokens],
|
| 478 |
+
outputs=msg,
|
| 479 |
+
).then(
|
| 480 |
+
lambda: gr.update(value=""),
|
| 481 |
+
None,
|
| 482 |
+
msg
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
submit.click(
|
| 486 |
+
chat_interface,
|
| 487 |
+
inputs=[msg, chatbot, temperature, top_p, top_k, max_tokens],
|
| 488 |
+
outputs=msg,
|
| 489 |
+
).then(
|
| 490 |
+
lambda: gr.update(value=""),
|
| 491 |
+
None,
|
| 492 |
+
msg
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 496 |
+
|
| 497 |
+
# Launch
|
| 498 |
+
if __name__ == "__main__":
|
| 499 |
+
print("\n" + "="*70)
|
| 500 |
+
print("๐ STARTING SAM CHAT INTERFACE".center(70))
|
| 501 |
+
print("="*70)
|
| 502 |
+
print(f"\nโ
Model loaded from: {MODEL_REPO}")
|
| 503 |
+
print(f"โ
Vocab size: {tokenizer.get_vocab_size()}")
|
| 504 |
+
print(f"โ
Ready to chat!\n")
|
| 505 |
+
|
| 506 |
+
demo.queue() # Enable streaming
|
| 507 |
+
demo.launch()
|