Spaces:
Runtime error
Runtime error
File size: 15,253 Bytes
590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df a459d20 590f0df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# -------------------------------
# app.py
#
# Sam-3: The Reasoning AI β Now Showing Its Thought Process!
# Powered by Smilyai-labs/Sam-3.0-3. Trained to think before speaking.
# -------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from safetensors.torch import load_file, safe_open
from transformers import AutoTokenizer
from dataclasses import dataclass
import gradio as gr
import os
from huggingface_hub import hf_hub_download
# -------------------------------
# 1) Sam-3.0-3 Architecture
# -------------------------------
@dataclass
class Sam3Config:
vocab_size: int = 50257
d_model: int = 384
n_layers: int = 10
n_heads: int = 6
ff_mult: float = 4.0
dropout: float = 0.1
input_modality: str = "text"
head_type: str = "causal_lm"
version: str = "0.1"
def __init__(self, vocab_size=50257, d_model=384, n_layers=10, n_heads=6, ff_mult=4.0, dropout=0.1, input_modality="text", head_type="causal_lm", version="0.1", **kwargs):
self.vocab_size = vocab_size
self.d_model = d_model
self.n_layers = n_layers
self.n_heads = n_heads
self.ff_mult = ff_mult
self.dropout = dropout
self.input_modality = input_modality
self.head_type = head_type
self.version = version
class RMSNorm(nn.Module):
def __init__(self, d, eps=1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d))
def forward(self, x):
return self.weight * x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()
class MHA(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.0):
super().__init__()
assert d_model % n_heads == 0
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model, bias=False)
self.k_proj = nn.Linear(d_model, d_model, bias=False)
self.v_proj = nn.Linear(d_model, d_model, bias=False)
self.out_proj = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x, attn_mask=None):
B, T, C = x.shape
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
causal = torch.triu(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=1)
scores = scores.masked_fill(causal, float("-inf"))
if attn_mask is not None:
scores = scores.masked_fill(~attn_mask.unsqueeze(1).unsqueeze(2).bool(), float("-inf"))
attn = torch.softmax(scores, dim=-1)
out = torch.matmul(self.dropout(attn), v).transpose(1, 2).contiguous().view(B, T, C)
return self.out_proj(out)
class SwiGLU(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.0):
super().__init__()
self.w1 = nn.Linear(d_model, d_ff, bias=False)
self.w2 = nn.Linear(d_model, d_ff, bias=False)
self.w3 = nn.Linear(d_ff, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w3(self.dropout(torch.nn.functional.silu(self.w1(x)) * self.w2(x)))
class Block(nn.Module):
def __init__(self, d_model, n_heads, ff_mult, dropout=0.0):
super().__init__()
self.norm1 = RMSNorm(d_model)
self.attn = MHA(d_model, n_heads, dropout=dropout)
self.norm2 = RMSNorm(d_model)
self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout)
self.drop = nn.Dropout(dropout)
def forward(self, x, attn_mask=None):
x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask))
x = x + self.drop(self.ff(self.norm2(x)))
return x
class Sam3(nn.Module):
def __init__(self, config: Sam3Config):
super().__init__()
self.config = config
self.embed = nn.Embedding(config.vocab_size, config.d_model)
self.blocks = nn.ModuleList([Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout) for _ in range(config.n_layers)])
self.norm = RMSNorm(config.d_model)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.lm_head.weight = self.embed.weight
def forward(self, input_ids, attention_mask=None):
x = self.embed(input_ids)
for blk in self.blocks:
x = blk(x, attn_mask=attention_mask)
x = self.norm(x)
return self.lm_head(x)
# -------------------------------
# 2) Load Tokenizer & Special Tokens
# -------------------------------
SPECIAL_TOKENS = {
"bos": "<|bos|>",
"eot": "<|eot|>",
"user": "<|user|>",
"assistant": "<|assistant|>",
"system": "<|system|>",
"think": "<|think|>",
}
tokenizer = AutoTokenizer.from_pretrained("gpt2")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": list(SPECIAL_TOKENS.values())})
EOT_ID = tokenizer.convert_tokens_to_ids("<|eot|>") or tokenizer.eos_token_id
THINK_ID = tokenizer.convert_tokens_to_ids("<|think|>")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# -------------------------------
# 3) Download Model Weights from Hugging Face Hub
# -------------------------------
hf_repo = "Smilyai-labs/Sam-3.0-3"
weights_filename = "model.safetensors"
print(f"Loading model '{hf_repo}' from Hugging Face Hub...")
try:
weights_path = hf_hub_download(repo_id=hf_repo, filename=weights_filename)
print(f"β
Downloaded weights to: {weights_path}")
if not os.path.exists(weights_path):
raise FileNotFoundError(f"Downloaded file not found at {weights_path}")
file_size = os.path.getsize(weights_path)
print(f"π File size: {file_size} bytes")
except Exception as e:
raise RuntimeError(f"β Failed to download model weights: {e}")
# Initialize model
cfg = Sam3Config(vocab_size=len(tokenizer))
model = Sam3(cfg).to(device)
# Load state dict safely
print("Loading state dict...")
try:
state_dict = {}
with safe_open(weights_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
print("β
Loaded via safe_open")
except Exception as e:
print(f"β οΈ safe_open failed: {e}. Falling back to torch.load...")
try:
state_dict = torch.load(weights_path, map_location="cpu")
print("β
Loaded via torch.load")
except Exception as torch_e:
raise RuntimeError(f"β Could not load model weights: {torch_e}")
# Filter and load
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
missing_keys = set(model_state_dict.keys()) - set(filtered_state_dict.keys())
extra_keys = set(state_dict.keys()) - set(model_state_dict.keys())
if missing_keys:
print(f"β οΈ Missing keys: {missing_keys}")
if extra_keys:
print(f"β οΈ Extra keys: {extra_keys}")
model.load_state_dict(filtered_state_dict, strict=False)
model.eval()
print("β
Model loaded successfully!")
# -------------------------------
# 4) Sampling Function (Unchanged)
# -------------------------------
def sample_next_token(
logits,
past_tokens,
temperature=0.8,
top_k=60,
top_p=0.9,
repetition_penalty=1.1,
max_repeat=5,
no_repeat_ngram_size=3
):
if logits.dim() == 3:
logits = logits[:, -1, :].clone()
else:
logits = logits.clone()
batch_size, vocab_size = logits.size(0), logits.size(1)
orig_logits = logits.clone()
if temperature != 1.0:
logits = logits / float(temperature)
past_list = past_tokens.tolist() if isinstance(past_tokens, torch.Tensor) else list(past_tokens)
for token_id in set(past_list):
if 0 <= token_id < vocab_size:
logits[:, token_id] /= repetition_penalty
if len(past_list) >= max_repeat:
last_token = past_list[-1]
count = 1
for i in reversed(past_list[:-1]):
if i == last_token:
count += 1
else:
break
if count >= max_repeat:
if 0 <= last_token < vocab_size:
logits[:, last_token] = -float("inf")
if no_repeat_ngram_size > 0 and len(past_list) >= no_repeat_ngram_size:
for i in range(len(past_list) - no_repeat_ngram_size + 1):
ngram = tuple(past_list[i : i + no_repeat_ngram_size])
if len(past_list) >= no_repeat_ngram_size - 1:
prefix = tuple(past_list[-(no_repeat_ngram_size - 1):])
for token_id in range(vocab_size):
if tuple(list(prefix) + [token_id]) == ngram and 0 <= token_id < vocab_size:
logits[:, token_id] = -float("inf")
if top_k is not None and top_k > 0:
tk = min(max(1, int(top_k)), vocab_size)
topk_vals, topk_indices = torch.topk(logits, tk, dim=-1)
min_topk = topk_vals[:, -1].unsqueeze(-1)
logits[logits < min_topk] = -float("inf")
if top_p is not None and 0.0 < top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
sorted_probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
for b in range(batch_size):
sorted_mask = cumulative_probs[b] > top_p
if sorted_mask.numel() > 0:
sorted_mask[0] = False
tokens_to_remove = sorted_indices[b][sorted_mask]
logits[b, tokens_to_remove] = -float("inf")
for b in range(batch_size):
if torch.isneginf(logits[b]).all():
logits[b] = orig_logits[b]
probs = F.softmax(logits, dim=-1)
if torch.isnan(probs).any():
probs = torch.ones_like(logits) / logits.size(1)
next_token = torch.multinomial(probs, num_samples=1)
return next_token.to(device)
# -------------------------------
# 5) Gradio Chat Interface β WITH STYLED THINKING STEPS
# -------------------------------
SPECIAL_TOKENS_CHAT = {"bos": "<|bos|>", "eot": "<|eot|>", "user": "<|user|>", "assistant": "<|assistant|>", "system": "<|system|>", "think": "<|think|>"}
def predict(message, history):
# Build prompt with <|think|> to trigger internal reasoning
chat_history = []
for human, assistant in history:
chat_history.append(f"{SPECIAL_TOKENS_CHAT['user']} {human} {SPECIAL_TOKENS_CHAT['eot']}")
if assistant:
chat_history.append(f"{SPECIAL_TOKENS_CHAT['assistant']} {assistant} {SPECIAL_TOKENS_CHAT['eot']}")
chat_history.append(f"{SPECIAL_TOKENS_CHAT['user']} {message} {SPECIAL_TOKENS_CHAT['eot']}")
system_prompt = "You are Sam-3, an advanced reasoning AI. You think step-by-step, analyze deeply, and respond with precision. You do not guess β you deduce. Avoid medical or legal advice."
prompt = f"{SPECIAL_TOKENS_CHAT['system']} {system_prompt} {SPECIAL_TOKENS_CHAT['eot']}\n" + "\n".join(chat_history) + f"\n{SPECIAL_TOKENS_CHAT['assistant']} {SPECIAL_TOKENS_CHAT['think']}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generated_text = ""
thinking_mode = False
thinking_buffer = ""
for _ in range(256):
with torch.no_grad():
logits = model(input_ids, attention_mask=attention_mask)
next_token = sample_next_token(logits, input_ids[0], temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.1)
token_id = int(next_token.squeeze().item())
token_str = tokenizer.decode([token_id], skip_special_tokens=False) # Keep special tokens!
input_ids = torch.cat([input_ids, next_token], dim=1)
attention_mask = torch.cat([attention_mask, torch.ones((attention_mask.size(0), 1), device=device, dtype=attention_mask.dtype)], dim=1)
# Detect if we're entering/exiting thinking mode
if not thinking_mode and token_str == "<|think|>":
thinking_mode = True
thinking_buffer = "" # Start capturing thoughts
continue # Don't yield <|think|> itself
if thinking_mode:
if token_str == "<|eot|>":
# End of thought β now yield the full thinking block
thinking_buffer = thinking_buffer.strip()
if thinking_buffer:
# Yield as styled markdown block
yield f"<div style='background-color:#f8f9fa; padding:12px; border-left:4px solid #ccc; border-radius:0 8px 8px 0; margin:10px 0; font-style:italic; color:#555;'>π‘ Thinking: {thinking_buffer}</div>"
thinking_mode = False
continue
else:
thinking_buffer += token_str
continue # Don't yield yet β buffer until <|eot|>
# Normal response output
if not thinking_mode:
generated_text += token_str
yield generated_text
# Stop on final EOT
if token_id == EOT_ID and not thinking_mode:
break
# Custom CSS for styling thinking blocks
CSS = """
.gradio-container .message-bubble {
border-radius: 12px !important;
}
.gradio-container .message-bubble.user {
background-color: #1f7bff !important;
color: white !important;
}
.gradio-container .message-bubble.assistant {
background-color: #e9ecef !important;
color: #212529 !important;
}
"""
# Gradio Interface
demo = gr.ChatInterface(
fn=predict,
title="π Sam-3: The Reasoning AI",
description="""
Sam-3 doesnβt just answer β it **thinks first**.
Watch its internal reasoning unfold in real time β step by step, clearly shown.
No guessing. No fluff. Just pure deduction.
Try asking:
β βWhy does a mirror reverse left and right but not up and down?β
β βIf I have 3 apples and give away half, then buy 5 more, how many do I have?β
β βExplain quantum entanglement like Iβm 10.β
β βWhatβs wrong with this argument: βAll birds fly; penguins are birds; therefore penguins can flyβ?β
""",
theme=gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue"
),
chatbot=gr.Chatbot(
label="Sam-3 π€",
bubble_full_width=False,
height=600,
avatar_images=(
"https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-bot.jpg",
"https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-user.jpg"
)
),
examples=[
"What is the capital of France?",
"Explain why the sky is blue.",
"If a train leaves at 2 PM going 60 mph, and another leaves 30 minutes later at 80 mph, when does the second catch up?",
"What are the ethical implications of AI making medical diagnoses?"
],
css=CSS,
cache_examples=False
).launch(
show_api=True
) |