Spaces:
Runtime error
Runtime error
File size: 13,941 Bytes
0b0ac5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# -------------------------------
# app.py β Sam-3.5: The Reasoning AI (Updated Architecture)
# -------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from safetensors.torch import load_file
from transformers import AutoTokenizer
from dataclasses import dataclass
from typing import Dict, List
import gradio as gr
import os
from huggingface_hub import hf_hub_download
import json
# -------------------------------
# 1) Configuration & Special Tokens
# -------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
SPECIAL_TOKENS = {
"bos": "<|bos|>",
"eot": "<|eot|>",
"user": "<|user|>",
"assistant": "<|assistant|>",
"system": "<|system|>",
"think": "<|think|>", # Keep this for reasoning display
}
tokenizer = AutoTokenizer.from_pretrained("gpt2")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": list(SPECIAL_TOKENS.values())})
SPECIAL_IDS = {k: tokenizer.convert_tokens_to_ids(v) for k, v in SPECIAL_TOKENS.items()}
EOT_ID = SPECIAL_IDS.get("eot", tokenizer.eos_token_id)
THINK_ID = SPECIAL_IDS.get("think")
assert THINK_ID is not None, "Tokenizer must include <|think|> token"
MAX_LENGTH = 1024
# -------------------------------
# 2) Model Architecture (Sam-3.5)
# -------------------------------
class RMSNorm(nn.Module):
def __init__(self, d, eps=1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d))
def forward(self, x):
return self.weight * x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()
class MHA(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.0):
super().__init__()
if d_model % n_heads != 0:
raise ValueError("d_model must be divisible by n_heads")
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model, bias=False)
self.k_proj = nn.Linear(d_model, d_model, bias=False)
self.v_proj = nn.Linear(d_model, d_model, bias=False)
self.out_proj = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x, attn_mask=None):
B, T, C = x.shape
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
out = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.dropout.p if self.training else 0.0
)
return self.out_proj(out.transpose(1, 2).contiguous().view(B, T, C))
class SwiGLU(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.0):
super().__init__()
self.w1 = nn.Linear(d_model, d_ff, bias=False)
self.w2 = nn.Linear(d_model, d_ff, bias=False)
self.w3 = nn.Linear(d_ff, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w3(self.dropout(F.silu(self.w1(x)) * self.w2(x)))
class Block(nn.Module):
def __init__(self, d_model, n_heads, ff_mult, dropout=0.0):
super().__init__()
self.norm1 = RMSNorm(d_model)
self.attn = MHA(d_model, n_heads, dropout=dropout)
self.norm2 = RMSNorm(d_model)
self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout)
self.drop = nn.Dropout(dropout)
def forward(self, x, attn_mask=None):
x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask))
x = x + self.drop(self.ff(self.norm2(x)))
return x
@dataclass
class Sam3Config:
vocab_size: int
d_model: int = 468
n_layers: int = 14
n_heads: int = 6
ff_mult: float = 4.0
dropout: float = 0.1
input_modality: str = "text"
head_type: str = "causal_lm"
version: str = "0.1"
class Sam3(nn.Module):
def __init__(self, config: Sam3Config):
super().__init__()
self.config = config
self.embed = nn.Embedding(config.vocab_size, config.d_model)
self.blocks = nn.ModuleList([
Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout)
for _ in range(config.n_layers)
])
self.norm = RMSNorm(config.d_model)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.lm_head.weight = self.embed.weight # Weight tying
def forward(self, input_ids, attention_mask=None):
x = self.embed(input_ids)
for blk in self.blocks:
x = blk(x, attn_mask=attention_mask)
x = self.norm(x)
return self.lm_head(x)
# -------------------------------
# 3) Load Model from Hugging Face Hub
# -------------------------------
def load_sam3_model_from_hf(repo_id: str, filename: str = "sam3-epoch1-best.safetensors"):
print(f"π₯ Loading config and weights from: {repo_id}")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
weights_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(config_path, "r") as f:
config_dict = json.load(f)
# Ensure vocab_size matches tokenizer after adding special tokens
config_dict["vocab_size"] = len(tokenizer)
config = Sam3Config(**config_dict)
model = Sam3(config).to(device)
state_dict = load_file(weights_path)
model.load_state_dict(state_dict, strict=False)
model.eval()
print(f"β
Model loaded successfully from Hugging Face Hub: {repo_id}")
return model
# Load model
model = load_sam3_model_from_hf("Smilyai-labs/Sam-3.5-1")
# -------------------------------
# 4) Sampling Function (Enhanced from your original)
# -------------------------------
def sample_next_token(
logits,
past_tokens,
temperature=0.8,
top_k=60,
top_p=0.9,
repetition_penalty=1.1,
max_repeat=5,
no_repeat_ngram_size=3
):
if logits.dim() == 3:
logits = logits[:, -1, :].clone()
else:
logits = logits.clone()
batch_size, vocab_size = logits.size(0), logits.size(1)
orig_logits = logits.clone()
if temperature != 1.0:
logits = logits / float(temperature)
past_list = past_tokens.tolist() if isinstance(past_tokens, torch.Tensor) else list(past_tokens)
for token_id in set(past_list):
if 0 <= token_id < vocab_size:
logits[:, token_id] /= repetition_penalty
if len(past_list) >= max_repeat:
last_token = past_list[-1]
count = 1
for i in reversed(past_list[:-1]):
if i == last_token:
count += 1
else:
break
if count >= max_repeat:
if 0 <= last_token < vocab_size:
logits[:, last_token] = -float("inf")
if no_repeat_ngram_size > 0 and len(past_list) >= no_repeat_ngram_size:
for i in range(len(past_list) - no_repeat_ngram_size + 1):
ngram = tuple(past_list[i : i + no_repeat_ngram_size])
if len(past_list) >= no_repeat_ngram_size - 1:
prefix = tuple(past_list[-(no_repeat_ngram_size - 1):])
for token_id in range(vocab_size):
if tuple(list(prefix) + [token_id]) == ngram and 0 <= token_id < vocab_size:
logits[:, token_id] = -float("inf")
if top_k is not None and top_k > 0:
tk = min(max(1, int(top_k)), vocab_size)
topk_vals, topk_indices = torch.topk(logits, tk, dim=-1)
min_topk = topk_vals[:, -1].unsqueeze(-1)
logits[logits < min_topk] = -float("inf")
if top_p is not None and 0.0 < top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
sorted_probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
for b in range(batch_size):
sorted_mask = cumulative_probs[b] > top_p
if sorted_mask.numel() > 0:
sorted_mask[0] = False
tokens_to_remove = sorted_indices[b][sorted_mask]
logits[b, tokens_to_remove] = -float("inf")
for b in range(batch_size):
if torch.isneginf(logits[b]).all():
logits[b] = orig_logits[b]
probs = F.softmax(logits, dim=-1)
if torch.isnan(probs).any():
probs = torch.ones_like(logits) / logits.size(1)
next_token = torch.multinomial(probs, num_samples=1)
return next_token.to(device)
# -------------------------------
# 5) Gradio Chat Interface β WITH STYLED THINKING STEPS
# -------------------------------
def predict(message, history):
# Build prompt
chat_history = []
for human, assistant in history:
chat_history.append(f"{SPECIAL_TOKENS['user']} {human} {SPECIAL_TOKENS['eot']}")
if assistant:
# Assistant responses may contain <|think|>...<|eot|> blocks β we don't reconstruct them here
chat_history.append(f"{SPECIAL_TOKENS['assistant']} {assistant} {SPECIAL_TOKENS['eot']}")
chat_history.append(f"{SPECIAL_TOKENS['user']} {message} {SPECIAL_TOKENS['eot']}")
system_prompt = "You are Sam-3.5, an advanced reasoning AI. You think step-by-step, analyze deeply, and respond with precision. You do not guess β you deduce. Avoid medical or legal advice."
prompt = f"{SPECIAL_TOKENS['system']} {system_prompt} {SPECIAL_TOKENS['eot']}\n" + "\n".join(chat_history) + f"\n{SPECIAL_TOKENS['assistant']} {SPECIAL_TOKENS['think']}"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=MAX_LENGTH).to(device)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generated_text = ""
thinking_mode = False
thinking_buffer = ""
for _ in range(256):
with torch.no_grad():
logits = model(input_ids, attention_mask=attention_mask)
next_token = sample_next_token(
logits,
input_ids[0],
temperature=0.4,
top_k=50,
top_p=0.9,
repetition_penalty=1.1
)
token_id = int(next_token.squeeze().item())
token_str = tokenizer.decode([token_id], skip_special_tokens=False)
# Append to sequence
input_ids = torch.cat([input_ids, next_token], dim=1)
attention_mask = torch.cat([attention_mask, torch.ones((1, 1), device=device, dtype=attention_mask.dtype)], dim=1)
# Handle thinking mode
if not thinking_mode and token_str.strip() == "<|think|>":
thinking_mode = True
thinking_buffer = ""
continue
if thinking_mode:
if token_str.strip() == "<|eot|>":
# End thinking block β yield styled output
thinking_buffer = thinking_buffer.strip()
if thinking_buffer:
yield f"<div style='background-color:#f8f9fa; padding:12px; border-left:4px solid #007bff; border-radius:0 8px 8px 0; margin:10px 0; font-style:italic; color:#495057; font-size:0.95em;'>π‘ <strong>Thinking:</strong> {thinking_buffer}</div>"
thinking_mode = False
continue
else:
thinking_buffer += token_str
continue
# Normal output
if not thinking_mode:
# Clean token for display (optional: handle GPT-2 space artifacts)
clean_token = token_str.replace('Δ ', ' ').replace('Δ', '\n')
generated_text += clean_token
yield generated_text
# Stop if final EOT (outside thinking block)
if token_id == EOT_ID and not thinking_mode:
break
# -------------------------------
# 6) Launch Gradio Interface
# -------------------------------
CSS = """
.gradio-container .message-bubble {
border-radius: 12px !important;
padding: 10px 14px !important;
font-size: 16px !important;
}
.gradio-container .message-bubble.user {
background-color: #007bff !important;
color: white !important;
}
.gradio-container .message-bubble.assistant {
background-color: #f8f9fa !important;
color: #212529 !important;
border: 1px solid #e9ecef;
}
"""
demo = gr.ChatInterface(
fn=predict,
title="π§ Sam-3.5: The Reasoning AI",
description="""
Sam-3.5 doesnβt just answer β it **thinks first**.
Watch its internal reasoning unfold in real time β step by step, clearly shown.
No guessing. No fluff. Just pure deduction.
Try asking:
β βWhy does a mirror reverse left and right but not up and down?β
β βIf I have 3 apples and give away half, then buy 5 more, how many do I have?β
β βExplain quantum entanglement like Iβm 10.β
β βWhatβs wrong with this argument: βAll birds fly; penguins are birds; therefore penguins can flyβ?β
""",
theme=gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue"
),
chatbot=gr.Chatbot(
label="Sam-3.5 π€",
bubble_full_width=False,
height=600,
avatar_images=(
"https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-bot.jpg",
"https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-user.jpg"
)
),
examples=[
"What is the capital of France?",
"Explain why the sky is blue.",
"If a train leaves at 2 PM going 60 mph, and another leaves 30 minutes later at 80 mph, when does the second catch up?",
"What are the ethical implications of AI making medical diagnoses?"
],
css=CSS,
cache_examples=False
)
if __name__ == "__main__":
demo.launch(show_api=True) |