File size: 13,941 Bytes
0b0ac5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -------------------------------
# app.py β€” Sam-3.5: The Reasoning AI (Updated Architecture)
# -------------------------------

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from safetensors.torch import load_file
from transformers import AutoTokenizer
from dataclasses import dataclass
from typing import Dict, List
import gradio as gr
import os
from huggingface_hub import hf_hub_download
import json

# -------------------------------
# 1) Configuration & Special Tokens
# -------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

SPECIAL_TOKENS = {
    "bos": "<|bos|>",
    "eot": "<|eot|>",
    "user": "<|user|>",
    "assistant": "<|assistant|>",
    "system": "<|system|>",
    "think": "<|think|>",  # Keep this for reasoning display
}

tokenizer = AutoTokenizer.from_pretrained("gpt2")
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": list(SPECIAL_TOKENS.values())})

SPECIAL_IDS = {k: tokenizer.convert_tokens_to_ids(v) for k, v in SPECIAL_TOKENS.items()}
EOT_ID = SPECIAL_IDS.get("eot", tokenizer.eos_token_id)
THINK_ID = SPECIAL_IDS.get("think")
assert THINK_ID is not None, "Tokenizer must include <|think|> token"

MAX_LENGTH = 1024

# -------------------------------
# 2) Model Architecture (Sam-3.5)
# -------------------------------
class RMSNorm(nn.Module):
    def __init__(self, d, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(d))
    def forward(self, x):
        return self.weight * x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()

class MHA(nn.Module):
    def __init__(self, d_model, n_heads, dropout=0.0):
        super().__init__()
        if d_model % n_heads != 0:
            raise ValueError("d_model must be divisible by n_heads")
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads
        self.q_proj = nn.Linear(d_model, d_model, bias=False)
        self.k_proj = nn.Linear(d_model, d_model, bias=False)
        self.v_proj = nn.Linear(d_model, d_model, bias=False)
        self.out_proj = nn.Linear(d_model, d_model, bias=False)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x, attn_mask=None):
        B, T, C = x.shape
        q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        out = F.scaled_dot_product_attention(
            q, k, v,
            is_causal=True,
            dropout_p=self.dropout.p if self.training else 0.0
        )
        return self.out_proj(out.transpose(1, 2).contiguous().view(B, T, C))

class SwiGLU(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.0):
        super().__init__()
        self.w1 = nn.Linear(d_model, d_ff, bias=False)
        self.w2 = nn.Linear(d_model, d_ff, bias=False)
        self.w3 = nn.Linear(d_ff, d_model, bias=False)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x):
        return self.w3(self.dropout(F.silu(self.w1(x)) * self.w2(x)))

class Block(nn.Module):
    def __init__(self, d_model, n_heads, ff_mult, dropout=0.0):
        super().__init__()
        self.norm1 = RMSNorm(d_model)
        self.attn = MHA(d_model, n_heads, dropout=dropout)
        self.norm2 = RMSNorm(d_model)
        self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout)
        self.drop = nn.Dropout(dropout)
    def forward(self, x, attn_mask=None):
        x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask))
        x = x + self.drop(self.ff(self.norm2(x)))
        return x

@dataclass
class Sam3Config:
    vocab_size: int
    d_model: int = 468
    n_layers: int = 14
    n_heads: int = 6
    ff_mult: float = 4.0
    dropout: float = 0.1
    input_modality: str = "text"
    head_type: str = "causal_lm"
    version: str = "0.1"

class Sam3(nn.Module):
    def __init__(self, config: Sam3Config):
        super().__init__()
        self.config = config
        self.embed = nn.Embedding(config.vocab_size, config.d_model)
        self.blocks = nn.ModuleList([
            Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout)
            for _ in range(config.n_layers)
        ])
        self.norm = RMSNorm(config.d_model)
        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
        self.lm_head.weight = self.embed.weight  # Weight tying

    def forward(self, input_ids, attention_mask=None):
        x = self.embed(input_ids)
        for blk in self.blocks:
            x = blk(x, attn_mask=attention_mask)
        x = self.norm(x)
        return self.lm_head(x)

# -------------------------------
# 3) Load Model from Hugging Face Hub
# -------------------------------
def load_sam3_model_from_hf(repo_id: str, filename: str = "sam3-epoch1-best.safetensors"):
    print(f"πŸ“₯ Loading config and weights from: {repo_id}")
    config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
    weights_path = hf_hub_download(repo_id=repo_id, filename=filename)

    with open(config_path, "r") as f:
        config_dict = json.load(f)

    # Ensure vocab_size matches tokenizer after adding special tokens
    config_dict["vocab_size"] = len(tokenizer)
    config = Sam3Config(**config_dict)

    model = Sam3(config).to(device)
    state_dict = load_file(weights_path)
    model.load_state_dict(state_dict, strict=False)

    model.eval()
    print(f"βœ… Model loaded successfully from Hugging Face Hub: {repo_id}")
    return model

# Load model
model = load_sam3_model_from_hf("Smilyai-labs/Sam-3.5-1")

# -------------------------------
# 4) Sampling Function (Enhanced from your original)
# -------------------------------
def sample_next_token(
    logits,
    past_tokens,
    temperature=0.8,
    top_k=60,
    top_p=0.9,
    repetition_penalty=1.1,
    max_repeat=5,
    no_repeat_ngram_size=3
):
    if logits.dim() == 3:
        logits = logits[:, -1, :].clone()
    else:
        logits = logits.clone()
    batch_size, vocab_size = logits.size(0), logits.size(1)
    orig_logits = logits.clone()

    if temperature != 1.0:
        logits = logits / float(temperature)

    past_list = past_tokens.tolist() if isinstance(past_tokens, torch.Tensor) else list(past_tokens)

    for token_id in set(past_list):
        if 0 <= token_id < vocab_size:
            logits[:, token_id] /= repetition_penalty

    if len(past_list) >= max_repeat:
        last_token = past_list[-1]
        count = 1
        for i in reversed(past_list[:-1]):
            if i == last_token:
                count += 1
            else:
                break
        if count >= max_repeat:
            if 0 <= last_token < vocab_size:
                logits[:, last_token] = -float("inf")

    if no_repeat_ngram_size > 0 and len(past_list) >= no_repeat_ngram_size:
        for i in range(len(past_list) - no_repeat_ngram_size + 1):
            ngram = tuple(past_list[i : i + no_repeat_ngram_size])
            if len(past_list) >= no_repeat_ngram_size - 1:
                prefix = tuple(past_list[-(no_repeat_ngram_size - 1):])
                for token_id in range(vocab_size):
                    if tuple(list(prefix) + [token_id]) == ngram and 0 <= token_id < vocab_size:
                        logits[:, token_id] = -float("inf")

    if top_k is not None and top_k > 0:
        tk = min(max(1, int(top_k)), vocab_size)
        topk_vals, topk_indices = torch.topk(logits, tk, dim=-1)
        min_topk = topk_vals[:, -1].unsqueeze(-1)
        logits[logits < min_topk] = -float("inf")

    if top_p is not None and 0.0 < top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
        sorted_probs = F.softmax(sorted_logits, dim=-1)
        cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
        for b in range(batch_size):
            sorted_mask = cumulative_probs[b] > top_p
            if sorted_mask.numel() > 0:
                sorted_mask[0] = False
                tokens_to_remove = sorted_indices[b][sorted_mask]
                logits[b, tokens_to_remove] = -float("inf")

    for b in range(batch_size):
        if torch.isneginf(logits[b]).all():
            logits[b] = orig_logits[b]

    probs = F.softmax(logits, dim=-1)
    if torch.isnan(probs).any():
        probs = torch.ones_like(logits) / logits.size(1)

    next_token = torch.multinomial(probs, num_samples=1)
    return next_token.to(device)

# -------------------------------
# 5) Gradio Chat Interface β€” WITH STYLED THINKING STEPS
# -------------------------------
def predict(message, history):
    # Build prompt
    chat_history = []
    for human, assistant in history:
        chat_history.append(f"{SPECIAL_TOKENS['user']} {human} {SPECIAL_TOKENS['eot']}")
        if assistant:
            # Assistant responses may contain <|think|>...<|eot|> blocks β€” we don't reconstruct them here
            chat_history.append(f"{SPECIAL_TOKENS['assistant']} {assistant} {SPECIAL_TOKENS['eot']}")

    chat_history.append(f"{SPECIAL_TOKENS['user']} {message} {SPECIAL_TOKENS['eot']}")
    
    system_prompt = "You are Sam-3.5, an advanced reasoning AI. You think step-by-step, analyze deeply, and respond with precision. You do not guess β€” you deduce. Avoid medical or legal advice."
    prompt = f"{SPECIAL_TOKENS['system']} {system_prompt} {SPECIAL_TOKENS['eot']}\n" + "\n".join(chat_history) + f"\n{SPECIAL_TOKENS['assistant']} {SPECIAL_TOKENS['think']}"

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=MAX_LENGTH).to(device)
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]

    generated_text = ""
    thinking_mode = False
    thinking_buffer = ""

    for _ in range(256):
        with torch.no_grad():
            logits = model(input_ids, attention_mask=attention_mask)
        next_token = sample_next_token(
            logits,
            input_ids[0],
            temperature=0.4,
            top_k=50,
            top_p=0.9,
            repetition_penalty=1.1
        )
        token_id = int(next_token.squeeze().item())
        token_str = tokenizer.decode([token_id], skip_special_tokens=False)

        # Append to sequence
        input_ids = torch.cat([input_ids, next_token], dim=1)
        attention_mask = torch.cat([attention_mask, torch.ones((1, 1), device=device, dtype=attention_mask.dtype)], dim=1)

        # Handle thinking mode
        if not thinking_mode and token_str.strip() == "<|think|>":
            thinking_mode = True
            thinking_buffer = ""
            continue

        if thinking_mode:
            if token_str.strip() == "<|eot|>":
                # End thinking block β†’ yield styled output
                thinking_buffer = thinking_buffer.strip()
                if thinking_buffer:
                    yield f"<div style='background-color:#f8f9fa; padding:12px; border-left:4px solid #007bff; border-radius:0 8px 8px 0; margin:10px 0; font-style:italic; color:#495057; font-size:0.95em;'>πŸ’‘ <strong>Thinking:</strong> {thinking_buffer}</div>"
                thinking_mode = False
                continue
            else:
                thinking_buffer += token_str
                continue

        # Normal output
        if not thinking_mode:
            # Clean token for display (optional: handle GPT-2 space artifacts)
            clean_token = token_str.replace('Ġ', ' ').replace('Ċ', '\n')
            generated_text += clean_token
            yield generated_text

        # Stop if final EOT (outside thinking block)
        if token_id == EOT_ID and not thinking_mode:
            break

# -------------------------------
# 6) Launch Gradio Interface
# -------------------------------
CSS = """
.gradio-container .message-bubble {
    border-radius: 12px !important;
    padding: 10px 14px !important;
    font-size: 16px !important;
}
.gradio-container .message-bubble.user {
    background-color: #007bff !important;
    color: white !important;
}
.gradio-container .message-bubble.assistant {
    background-color: #f8f9fa !important;
    color: #212529 !important;
    border: 1px solid #e9ecef;
}
"""

demo = gr.ChatInterface(
    fn=predict,
    title="🧠 Sam-3.5: The Reasoning AI",
    description="""
    Sam-3.5 doesn’t just answer β€” it **thinks first**.  
    Watch its internal reasoning unfold in real time β€” step by step, clearly shown.  
    No guessing. No fluff. Just pure deduction.
    
    Try asking:
    β†’ β€œWhy does a mirror reverse left and right but not up and down?”  
    β†’ β€œIf I have 3 apples and give away half, then buy 5 more, how many do I have?”  
    β†’ β€œExplain quantum entanglement like I’m 10.”  
    β†’ β€œWhat’s wrong with this argument: β€˜All birds fly; penguins are birds; therefore penguins can fly’?”
    """,
    theme=gr.themes.Soft(
        primary_hue="indigo",
        secondary_hue="blue"
    ),
    chatbot=gr.Chatbot(
        label="Sam-3.5 πŸ€”",
        bubble_full_width=False,
        height=600,
        avatar_images=(
            "https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-bot.jpg",
            "https://huggingface.co/datasets/huggingface/branding/resolve/main/avatar-user.jpg"
        )
    ),
    examples=[
        "What is the capital of France?",
        "Explain why the sky is blue.",
        "If a train leaves at 2 PM going 60 mph, and another leaves 30 minutes later at 80 mph, when does the second catch up?",
        "What are the ethical implications of AI making medical diagnoses?"
    ],
    css=CSS,
    cache_examples=False
)

if __name__ == "__main__":
    demo.launch(show_api=True)