Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,10 +11,10 @@ import time
|
|
| 11 |
# ============================================================================
|
| 12 |
# π FESTIVE MODE TOGGLE π
|
| 13 |
# ============================================================================
|
| 14 |
-
FESTIVE = True
|
| 15 |
|
| 16 |
# ============================================================================
|
| 17 |
-
# Configuration & Model Loading
|
| 18 |
# ============================================================================
|
| 19 |
|
| 20 |
print("π Loading Sam-large-2 Model...")
|
|
@@ -39,14 +39,11 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 39 |
super().build(input_shape)
|
| 40 |
|
| 41 |
def _build_cache(self):
|
| 42 |
-
"""Build RoPE cache on first forward pass"""
|
| 43 |
if not self.built_cache:
|
| 44 |
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
|
| 45 |
t = tf.range(self.max_len, dtype=tf.float32)
|
| 46 |
freqs = tf.einsum("i,j->ij", t, inv_freq)
|
| 47 |
emb = tf.concat([freqs, freqs], axis=-1)
|
| 48 |
-
|
| 49 |
-
# Store as constant tensors
|
| 50 |
self.cos_cached = tf.constant(np.cos(emb.numpy()), dtype=tf.float32)
|
| 51 |
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
|
| 52 |
self.built_cache = True
|
|
@@ -57,16 +54,11 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 57 |
|
| 58 |
def call(self, q, k):
|
| 59 |
self._build_cache()
|
| 60 |
-
|
| 61 |
seq_len = tf.shape(q)[2]
|
| 62 |
dtype = q.dtype
|
| 63 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 64 |
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 65 |
-
|
| 66 |
-
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
|
| 67 |
-
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
|
| 68 |
-
|
| 69 |
-
return q_rotated, k_rotated
|
| 70 |
|
| 71 |
def get_config(self):
|
| 72 |
config = super().get_config()
|
|
@@ -108,65 +100,39 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 108 |
|
| 109 |
self.pre_attn_norm = RMSNorm()
|
| 110 |
self.pre_ffn_norm = RMSNorm()
|
| 111 |
-
|
| 112 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
|
| 113 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
|
| 114 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
|
| 115 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
|
| 116 |
-
|
| 117 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
| 118 |
-
|
| 119 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
|
| 120 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
|
| 121 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
|
| 122 |
-
|
| 123 |
self.dropout = keras.layers.Dropout(dropout)
|
| 124 |
|
| 125 |
def call(self, x, training=None):
|
| 126 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 127 |
dtype = x.dtype
|
| 128 |
-
|
| 129 |
-
# Attention
|
| 130 |
res = x
|
| 131 |
y = self.pre_attn_norm(x)
|
| 132 |
-
|
| 133 |
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 134 |
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 135 |
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 136 |
-
|
| 137 |
q, k = self.rope(q, k)
|
| 138 |
-
|
| 139 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 140 |
-
|
| 141 |
-
mask = tf.where(
|
| 142 |
-
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
|
| 143 |
-
tf.constant(-1e9, dtype=dtype),
|
| 144 |
-
tf.constant(0.0, dtype=dtype)
|
| 145 |
-
)
|
| 146 |
scores += mask
|
| 147 |
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
|
| 148 |
-
|
| 149 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 150 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
| 151 |
-
|
| 152 |
-
# FFN (SwiGLU)
|
| 153 |
res = x
|
| 154 |
y = self.pre_ffn_norm(x)
|
| 155 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
| 156 |
-
|
| 157 |
return res + self.dropout(ffn, training=training)
|
| 158 |
|
| 159 |
def get_config(self):
|
| 160 |
config = super().get_config()
|
| 161 |
-
config.update({
|
| 162 |
-
"d_model": self.d_model,
|
| 163 |
-
"n_heads": self.n_heads,
|
| 164 |
-
"ff_dim": self.ff_dim,
|
| 165 |
-
"dropout": self.dropout_rate,
|
| 166 |
-
"max_len": self.max_len,
|
| 167 |
-
"rope_theta": self.rope_theta,
|
| 168 |
-
"layer_idx": self.layer_idx
|
| 169 |
-
})
|
| 170 |
return config
|
| 171 |
|
| 172 |
|
|
@@ -182,31 +148,19 @@ class SAM1Model(keras.Model):
|
|
| 182 |
self.cfg = kwargs.get('cfg', kwargs)
|
| 183 |
|
| 184 |
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
|
| 185 |
-
|
| 186 |
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
|
| 187 |
-
block_args = {
|
| 188 |
-
'd_model': self.cfg['d_model'],
|
| 189 |
-
'n_heads': self.cfg['n_heads'],
|
| 190 |
-
'ff_dim': ff_dim,
|
| 191 |
-
'dropout': self.cfg['dropout'],
|
| 192 |
-
'max_len': self.cfg['max_len'],
|
| 193 |
-
'rope_theta': self.cfg['rope_theta']
|
| 194 |
-
}
|
| 195 |
-
|
| 196 |
self.blocks = []
|
| 197 |
for i in range(self.cfg['n_layers']):
|
| 198 |
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
|
| 199 |
self.blocks.append(block)
|
| 200 |
-
|
| 201 |
self.norm = RMSNorm(name="final_norm")
|
| 202 |
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
|
| 203 |
|
| 204 |
def call(self, input_ids, training=None):
|
| 205 |
x = self.embed(input_ids)
|
| 206 |
-
|
| 207 |
for block in self.blocks:
|
| 208 |
x = block(x, training=training)
|
| 209 |
-
|
| 210 |
return self.lm_head(self.norm(x))
|
| 211 |
|
| 212 |
def get_config(self):
|
|
@@ -216,10 +170,8 @@ class SAM1Model(keras.Model):
|
|
| 216 |
|
| 217 |
# --- Model and Tokenizer Loading ---
|
| 218 |
|
| 219 |
-
# Download model files
|
| 220 |
config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR)
|
| 221 |
|
| 222 |
-
# Try to download checkpoint weights first (more reliable)
|
| 223 |
try:
|
| 224 |
weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR)
|
| 225 |
print("β
Found checkpoint weights (ckpt.weights.h5)")
|
|
@@ -231,14 +183,10 @@ except Exception as e:
|
|
| 231 |
use_checkpoint = False
|
| 232 |
except Exception as e_model:
|
| 233 |
print(f"β Also failed to find model.keras: {e_model}")
|
| 234 |
-
# Commenting out raise to allow the Gradio UI to load even if model fails
|
| 235 |
-
# raise
|
| 236 |
|
| 237 |
-
# Load config
|
| 238 |
with open(config_path, 'r') as f:
|
| 239 |
config = json.load(f)
|
| 240 |
|
| 241 |
-
# Create tokenizer from scratch
|
| 242 |
from transformers import AutoTokenizer
|
| 243 |
|
| 244 |
hf_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
|
@@ -249,19 +197,14 @@ hf_tokenizer.save_pretrained("./temp_tokenizer")
|
|
| 249 |
tokenizer = Tokenizer.from_file("./temp_tokenizer/tokenizer.json")
|
| 250 |
|
| 251 |
print(f"β
Tokenizer created with vocab size: {tokenizer.get_vocab_size()}")
|
| 252 |
-
|
| 253 |
eos_token_id = config.get('eos_token_id', 50256)
|
| 254 |
|
| 255 |
-
# ==============================================================================
|
| 256 |
-
# Load Model - Priority: checkpoint weights > saved model
|
| 257 |
-
# ==============================================================================
|
| 258 |
print("\nπ Loading model...")
|
| 259 |
|
| 260 |
model = None
|
| 261 |
|
| 262 |
if use_checkpoint:
|
| 263 |
print("π¦ Building model from config and loading checkpoint weights...")
|
| 264 |
-
|
| 265 |
model_config = {
|
| 266 |
'vocab_size': config['vocab_size'],
|
| 267 |
'd_model': config['hidden_size'],
|
|
@@ -272,53 +215,37 @@ if use_checkpoint:
|
|
| 272 |
'dropout': 0.1,
|
| 273 |
'rope_theta': config['rope_theta']
|
| 274 |
}
|
| 275 |
-
|
| 276 |
model = SAM1Model(config=model_config)
|
| 277 |
-
|
| 278 |
-
# Dummy call to build the model graph
|
| 279 |
dummy_input = tf.zeros((1, config['max_position_embeddings']), dtype=tf.int32)
|
| 280 |
_ = model(dummy_input, training=False)
|
| 281 |
-
|
| 282 |
print(f"β
Model architecture built: {model.count_params():,} parameters")
|
| 283 |
-
|
| 284 |
try:
|
| 285 |
model.load_weights(weights_path)
|
| 286 |
print("β
Checkpoint weights loaded successfully!")
|
| 287 |
except Exception as e:
|
| 288 |
print(f"β Failed to load checkpoint weights: {e}")
|
| 289 |
-
# Continue with un-initialized model, which will likely fail on inference
|
| 290 |
else:
|
| 291 |
print("π¦ Loading full saved model...")
|
| 292 |
try:
|
| 293 |
-
|
| 294 |
-
custom_objects = {
|
| 295 |
-
'SAM1Model': SAM1Model,
|
| 296 |
-
'TransformerBlock': TransformerBlock,
|
| 297 |
-
'RMSNorm': RMSNorm,
|
| 298 |
-
'RotaryEmbedding': RotaryEmbedding
|
| 299 |
-
}
|
| 300 |
model = keras.models.load_model(model_path, compile=False, custom_objects=custom_objects)
|
| 301 |
print("β
Model loaded successfully")
|
| 302 |
except Exception as e:
|
| 303 |
print(f"β Failed to load model: {e}")
|
| 304 |
-
# Commenting out raise to allow the Gradio UI to load even if model fails
|
| 305 |
-
# raise
|
| 306 |
|
| 307 |
if model:
|
| 308 |
print(f"β
Model loaded: {config['num_hidden_layers']} layers, {config['vocab_size']} vocab")
|
| 309 |
|
| 310 |
-
# Global stop flag
|
| 311 |
-
stop_generation = False
|
| 312 |
-
|
| 313 |
# ============================================================================
|
| 314 |
-
#
|
| 315 |
# ============================================================================
|
| 316 |
|
| 317 |
-
#
|
| 318 |
-
@tf.function(
|
| 319 |
-
def
|
| 320 |
-
|
| 321 |
-
|
|
|
|
| 322 |
|
| 323 |
def generate_stream(
|
| 324 |
prompt: str,
|
|
@@ -328,57 +255,88 @@ def generate_stream(
|
|
| 328 |
top_p: float = 0.9,
|
| 329 |
repetition_penalty: float = 1.1
|
| 330 |
):
|
| 331 |
-
"""Generate text with streaming output
|
| 332 |
global stop_generation
|
| 333 |
stop_generation = False
|
| 334 |
|
|
|
|
| 335 |
prompt_ids = tokenizer.encode(prompt).ids
|
| 336 |
input_ids = [i for i in prompt_ids if i != eos_token_id]
|
| 337 |
|
|
|
|
| 338 |
generated_text = ""
|
| 339 |
token_count = 0
|
| 340 |
-
|
| 341 |
|
| 342 |
-
|
| 343 |
-
fixed_demo_tokens = [
|
| 344 |
-
tokenizer.token_to_id("Hello"),
|
| 345 |
-
tokenizer.token_to_id(" world"),
|
| 346 |
-
tokenizer.token_to_id("."),
|
| 347 |
-
tokenizer.token_to_id(" I"),
|
| 348 |
-
tokenizer.token_to_id(" am"),
|
| 349 |
-
tokenizer.token_to_id(" Sam"),
|
| 350 |
-
tokenizer.token_to_id("-"),
|
| 351 |
-
tokenizer.token_to_id("large"),
|
| 352 |
-
tokenizer.token_to_id("-"),
|
| 353 |
-
tokenizer.token_to_id("2")
|
| 354 |
-
]
|
| 355 |
|
| 356 |
-
|
|
|
|
| 357 |
if stop_generation:
|
|
|
|
| 358 |
break
|
| 359 |
|
| 360 |
-
#
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
else:
|
| 364 |
-
|
|
|
|
| 365 |
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
| 367 |
break
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
|
|
|
|
| 370 |
token_count += 1
|
| 371 |
|
| 372 |
-
|
| 373 |
-
generated_text = tokenizer.decode(input_ids[len(prompt_ids):], skip_special_tokens=False)
|
| 374 |
-
except Exception:
|
| 375 |
-
pass
|
| 376 |
|
| 377 |
-
#
|
| 378 |
-
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
| 382 |
elapsed = time.time() - start_time
|
| 383 |
tokens_per_sec = token_count / elapsed if elapsed > 0 else 0
|
| 384 |
|
|
@@ -392,19 +350,16 @@ def generate_stream(
|
|
| 392 |
# ============================================================================
|
| 393 |
|
| 394 |
def format_chat_prompt(message: str, history: list, reasoning_enabled: bool) -> str:
|
| 395 |
-
"""Format message history
|
| 396 |
prompt = ""
|
| 397 |
-
|
| 398 |
-
# Add history
|
| 399 |
for user_msg, assistant_msg in history:
|
| 400 |
prompt += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
| 401 |
if assistant_msg:
|
| 402 |
prompt += f"<|im_start|>assistant\n{assistant_msg}<|im_end|>\n"
|
| 403 |
|
| 404 |
-
# Add current message
|
| 405 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 406 |
|
| 407 |
-
#
|
| 408 |
if reasoning_enabled:
|
| 409 |
prompt += "<think>"
|
| 410 |
|
|
@@ -420,7 +375,6 @@ def chat_stream(
|
|
| 420 |
repetition_penalty: float,
|
| 421 |
reasoning_enabled: bool
|
| 422 |
):
|
| 423 |
-
"""Streaming chat response"""
|
| 424 |
if not message.strip():
|
| 425 |
yield history
|
| 426 |
return
|
|
@@ -428,21 +382,14 @@ def chat_stream(
|
|
| 428 |
prompt = format_chat_prompt(message, history, reasoning_enabled)
|
| 429 |
partial_response = ""
|
| 430 |
|
| 431 |
-
#
|
| 432 |
-
|
| 433 |
-
simulated_thought = (
|
| 434 |
-
"Deciding the response requires an introduction and answering the user's implicit query. "
|
| 435 |
-
"I will start with a friendly greeting and state my identity."
|
| 436 |
-
)
|
| 437 |
-
# Prepend the thought to the prompt for the generator to pick up
|
| 438 |
-
prompt = prompt.replace("<think>", f"<think>{simulated_thought}</think>")
|
| 439 |
-
|
| 440 |
for generated in generate_stream(
|
| 441 |
prompt, max_tokens, temperature, top_k, top_p, repetition_penalty
|
| 442 |
):
|
| 443 |
partial_response = generated
|
| 444 |
|
| 445 |
-
# Robust End-of-Turn Detection
|
| 446 |
stop_tags = ["<|im_end|>", "<im end for model tun>"]
|
| 447 |
earliest_stop = len(partial_response)
|
| 448 |
should_stop = False
|
|
@@ -455,295 +402,119 @@ def chat_stream(
|
|
| 455 |
if should_stop:
|
| 456 |
partial_response = partial_response[:earliest_stop]
|
| 457 |
|
| 458 |
-
# Post-process reasoning tags for display (
|
| 459 |
if reasoning_enabled:
|
| 460 |
-
# Look for the simulated thought or any generated thought
|
| 461 |
if '<think>' in partial_response and '</think>' in partial_response:
|
| 462 |
start_idx = partial_response.find('<think>')
|
| 463 |
end_idx = partial_response.find('</think>')
|
| 464 |
if start_idx != -1 and end_idx != -1 and end_idx > start_idx:
|
| 465 |
thought_content = partial_response[start_idx + len('<think>'):end_idx].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
details_html = (
|
| 467 |
f'<details class="reasoning-block">'
|
| 468 |
f'<summary>Model Reasoning (Click to show/hide)</summary>'
|
| 469 |
-
f'<p>{
|
| 470 |
f'</details>'
|
| 471 |
)
|
| 472 |
partial_response = partial_response[:start_idx] + details_html + partial_response[end_idx + len('</think>'):]
|
| 473 |
elif start_idx != -1 and end_idx == -1:
|
| 474 |
-
#
|
| 475 |
-
partial_response = partial_response.replace('<think>', '')
|
| 476 |
|
| 477 |
-
# Update history
|
| 478 |
yield history + [[message, partial_response.strip()]]
|
| 479 |
|
| 480 |
def stop_gen():
|
| 481 |
-
"""Stop generation callback"""
|
| 482 |
global stop_generation
|
| 483 |
stop_generation = True
|
| 484 |
return None
|
| 485 |
|
| 486 |
# ============================================================================
|
| 487 |
-
# Gradio UI
|
| 488 |
# ============================================================================
|
| 489 |
|
| 490 |
custom_css = """
|
| 491 |
-
.gradio-container {
|
| 492 |
-
max-width: 1200px !important;
|
| 493 |
-
margin: auto !important;
|
| 494 |
-
}
|
| 495 |
-
|
| 496 |
.header {
|
| 497 |
-
text-align: center;
|
| 498 |
-
|
| 499 |
-
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
| 500 |
-
color: white;
|
| 501 |
-
border-radius: 12px;
|
| 502 |
-
margin-bottom: 2rem;
|
| 503 |
-
box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);
|
| 504 |
animation: pulse 2s ease-in-out infinite;
|
| 505 |
}
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
}
|
| 511 |
-
|
| 512 |
-
.header h1 {
|
| 513 |
-
font-size: 2.8rem;
|
| 514 |
-
margin-bottom: 0.5rem;
|
| 515 |
-
font-weight: 700;
|
| 516 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
|
| 517 |
-
}
|
| 518 |
-
|
| 519 |
-
.header p {
|
| 520 |
-
font-size: 1.1rem;
|
| 521 |
-
opacity: 0.95;
|
| 522 |
-
}
|
| 523 |
-
|
| 524 |
-
.celebration {
|
| 525 |
-
font-size: 2rem;
|
| 526 |
-
margin: 0.5rem;
|
| 527 |
-
animation: bounce 1s ease infinite;
|
| 528 |
-
}
|
| 529 |
-
|
| 530 |
-
@keyframes bounce {
|
| 531 |
-
0%, 100% { transform: translateY(0); }
|
| 532 |
-
50% { transform: translateY(-10px); }
|
| 533 |
-
}
|
| 534 |
-
|
| 535 |
.twin-badge {
|
| 536 |
-
display: inline-block;
|
| 537 |
-
|
| 538 |
-
color: white;
|
| 539 |
-
padding: 0.5rem 1rem;
|
| 540 |
-
border-radius: 20px;
|
| 541 |
-
font-weight: bold;
|
| 542 |
-
margin: 0.5rem;
|
| 543 |
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
|
| 544 |
}
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
text-align: center;
|
| 548 |
-
padding: 2rem;
|
| 549 |
-
color: #666;
|
| 550 |
-
border-top: 1px solid #eee;
|
| 551 |
-
margin-top: 2rem;
|
| 552 |
-
}
|
| 553 |
-
|
| 554 |
-
/* Reasoning Toggle */
|
| 555 |
-
#reasoning-control-group {
|
| 556 |
-
position: relative;
|
| 557 |
-
display: flex;
|
| 558 |
-
align-items: center;
|
| 559 |
-
justify-content: center;
|
| 560 |
-
margin-right: 10px;
|
| 561 |
-
}
|
| 562 |
-
|
| 563 |
#reasoning-toggle-btn {
|
| 564 |
-
font-size: 1.5rem;
|
| 565 |
-
|
| 566 |
-
width: 40px;
|
| 567 |
-
height: 40px;
|
| 568 |
-
padding: 0;
|
| 569 |
-
min-width: 0 !important;
|
| 570 |
-
line-height: 1;
|
| 571 |
-
background-color: #ffcc00;
|
| 572 |
-
border: 2px solid #e6b800;
|
| 573 |
}
|
| 574 |
-
|
| 575 |
-
#reasoning-toggle-btn.off {
|
| 576 |
-
background-color: #e0e0e0;
|
| 577 |
-
border: 2px solid #ccc;
|
| 578 |
-
}
|
| 579 |
-
|
| 580 |
.new-tag-red {
|
| 581 |
-
display: inline-block;
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
font-size: 0.7em;
|
| 585 |
-
font-weight: bold;
|
| 586 |
-
padding: 2px 5px;
|
| 587 |
-
border-radius: 4px;
|
| 588 |
-
line-height: 1;
|
| 589 |
-
position: absolute;
|
| 590 |
-
top: -5px;
|
| 591 |
-
right: -5px;
|
| 592 |
-
z-index: 10;
|
| 593 |
-
animation: blink 1s infinite;
|
| 594 |
}
|
| 595 |
-
|
| 596 |
-
@keyframes blink {
|
| 597 |
-
0%, 100% { opacity: 1; }
|
| 598 |
-
50% { opacity: 0.5; }
|
| 599 |
-
}
|
| 600 |
-
|
| 601 |
-
/* Reasoning block styling inside chatbot */
|
| 602 |
.gradio-html details.reasoning-block {
|
| 603 |
-
border: 1px solid #ddd;
|
| 604 |
-
border-
|
| 605 |
-
padding: 5px 10px;
|
| 606 |
-
margin: 10px 0;
|
| 607 |
-
border-radius: 4px;
|
| 608 |
-
background-color: #f9f9ff;
|
| 609 |
}
|
| 610 |
-
|
| 611 |
-
.gradio-html details.reasoning-block
|
| 612 |
-
font-weight: bold;
|
| 613 |
-
cursor: pointer;
|
| 614 |
-
outline: none;
|
| 615 |
-
color: #667eea;
|
| 616 |
-
}
|
| 617 |
-
|
| 618 |
-
.gradio-html details.reasoning-block p {
|
| 619 |
-
margin-top: 5px;
|
| 620 |
-
padding-left: 10px;
|
| 621 |
-
border-left: 1px dashed #ccc;
|
| 622 |
-
white-space: pre-wrap;
|
| 623 |
-
}
|
| 624 |
-
|
| 625 |
-
/* --- Modal Styling --- */
|
| 626 |
.modal-overlay {
|
| 627 |
-
position: fixed;
|
| 628 |
-
|
| 629 |
-
left: 0;
|
| 630 |
-
right: 0;
|
| 631 |
-
bottom: 0;
|
| 632 |
-
background: rgba(0, 0, 0, 0.7);
|
| 633 |
-
display: flex;
|
| 634 |
-
justify-content: center;
|
| 635 |
-
align-items: center;
|
| 636 |
-
z-index: 1000;
|
| 637 |
}
|
| 638 |
-
|
| 639 |
.modal-content {
|
| 640 |
-
background: white;
|
| 641 |
-
|
| 642 |
-
border-radius: 15px;
|
| 643 |
-
width: 90%;
|
| 644 |
-
max-width: 900px;
|
| 645 |
-
box-shadow: 0 10px 50px rgba(0, 0, 0, 0.5);
|
| 646 |
-
animation: slide-in 0.5s ease-out;
|
| 647 |
-
}
|
| 648 |
-
|
| 649 |
-
@keyframes slide-in {
|
| 650 |
-
from { transform: translateY(-50px); opacity: 0; }
|
| 651 |
-
to { transform: translateY(0); opacity: 1; }
|
| 652 |
-
}
|
| 653 |
-
|
| 654 |
-
.modal-content h2 {
|
| 655 |
-
color: #764ba2;
|
| 656 |
-
border-bottom: 2px solid #eee;
|
| 657 |
-
padding-bottom: 10px;
|
| 658 |
-
margin-top: 0;
|
| 659 |
-
}
|
| 660 |
-
|
| 661 |
-
.comparison-box {
|
| 662 |
-
display: flex;
|
| 663 |
-
gap: 20px;
|
| 664 |
-
margin-top: 20px;
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
-
.comparison-mode {
|
| 668 |
-
flex: 1;
|
| 669 |
-
padding: 15px;
|
| 670 |
-
border-radius: 10px;
|
| 671 |
-
}
|
| 672 |
-
|
| 673 |
-
.mode-reasoning {
|
| 674 |
-
border: 2px solid #667eea;
|
| 675 |
-
background-color: #f6f7ff;
|
| 676 |
-
}
|
| 677 |
-
|
| 678 |
-
.mode-direct {
|
| 679 |
-
border: 2px solid #fcb69f;
|
| 680 |
-
background-color: #fffaf5;
|
| 681 |
-
}
|
| 682 |
-
|
| 683 |
-
.comparison-mode h3 {
|
| 684 |
-
margin-top: 0;
|
| 685 |
-
font-size: 1.3rem;
|
| 686 |
-
}
|
| 687 |
-
|
| 688 |
-
.comparison-mode pre {
|
| 689 |
-
background-color: #eef;
|
| 690 |
-
padding: 10px;
|
| 691 |
-
border-radius: 5px;
|
| 692 |
-
overflow-x: auto;
|
| 693 |
}
|
| 694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
.close-btn {
|
| 696 |
-
margin-top: 20px;
|
| 697 |
-
|
| 698 |
-
background-color: #764ba2;
|
| 699 |
-
color: white;
|
| 700 |
-
border: none;
|
| 701 |
-
border-radius: 8px;
|
| 702 |
-
cursor: pointer;
|
| 703 |
-
font-size: 1rem;
|
| 704 |
-
transition: background-color 0.3s;
|
| 705 |
-
}
|
| 706 |
-
|
| 707 |
-
.close-btn:hover {
|
| 708 |
-
background-color: #5d3a84;
|
| 709 |
}
|
|
|
|
| 710 |
"""
|
| 711 |
|
| 712 |
festive_css = custom_css
|
| 713 |
custom_css = festive_css
|
| 714 |
|
| 715 |
-
# Build interface
|
| 716 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 717 |
reasoning_enabled = gr.State(False)
|
| 718 |
modal_shown = gr.State(False)
|
| 719 |
|
| 720 |
-
# --- The Welcome Modal HTML Component ---
|
| 721 |
welcome_modal_html = gr.HTML(
|
| 722 |
"""
|
| 723 |
<div id="welcome-modal" class="modal-overlay" style="display:none;">
|
| 724 |
<div class="modal-content">
|
| 725 |
<h2>π§ Welcome to Sam-large-2: Dual-Mode Reasoning Demo</h2>
|
| 726 |
<p>Our latest model, **Sam-large-2**, features **Chain-of-Thought (CoT)** functionality. You can toggle this feature using the π‘ button next to the input field.</p>
|
| 727 |
-
<p>Here is how the two modes affect the output:</p>
|
| 728 |
<div class="comparison-box">
|
| 729 |
<div class="comparison-mode mode-reasoning">
|
| 730 |
<h3>π‘ Reasoning Mode (ON)</h3>
|
| 731 |
-
<p>The model performs a **CoT step** first. The internal thought process is contained within the <code><think>...</think></code> tags
|
| 732 |
-
<pre>
|
| 733 |
-
<think>
|
| 734 |
-
1. Identify the user's request.
|
| 735 |
-
2. Formulate a plan...
|
| 736 |
-
</think>
|
| 737 |
-
[Collapsible Box]
|
| 738 |
-
This is the final, reasoned answer.
|
| 739 |
-
</pre>
|
| 740 |
</div>
|
| 741 |
<div class="comparison-mode mode-direct">
|
| 742 |
<h3>βͺ Direct Mode (OFF)</h3>
|
| 743 |
-
<p>The model generates the final answer immediately, maximizing speed
|
| 744 |
-
<pre>
|
| 745 |
-
This is the final, direct answer.
|
| 746 |
-
</pre>
|
| 747 |
</div>
|
| 748 |
</div>
|
| 749 |
<button class="close-btn" onclick="document.getElementById('welcome-modal').style.display='none'">Got it! Start Chatting</button>
|
|
@@ -752,37 +523,20 @@ This is the final, direct answer.
|
|
| 752 |
"""
|
| 753 |
)
|
| 754 |
|
| 755 |
-
# Header
|
| 756 |
if FESTIVE:
|
| 757 |
gr.HTML("""
|
| 758 |
<div class="header">
|
| 759 |
<div class="celebration">π π β¨ π π</div>
|
| 760 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/yBUDdaTze1L84NaDSpZGf.jpeg"
|
| 761 |
-
alt="Sam-large-2"
|
| 762 |
-
style="max-width: 400px; border-radius: 12px; margin: 1rem auto; display: block; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);">
|
| 763 |
<h1>π€ Sam-large-2 Chat π€</h1>
|
| 764 |
<p><strong>LATEST RELEASE!</strong> Our **BEST Reasoning Model** - Full Chain-of-Thought!</p>
|
| 765 |
<div class="twin-badge">Reasoning Model</div>
|
| 766 |
-
<p style="font-size: 0.9rem; margin-top: 1rem;">
|
| 767 |
-
768D β’ 16 Layers β’ 12 Heads β’ ~313M Parameters β’ **Trained for Reasoning**
|
| 768 |
-
</p>
|
| 769 |
<div class="celebration">π π« π― β‘ π₯</div>
|
| 770 |
</div>
|
| 771 |
""")
|
| 772 |
else:
|
| 773 |
-
gr.HTML("""
|
| 774 |
-
<div class="header">
|
| 775 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/yBUDdaTze1L84NaDSpZGf.jpeg"
|
| 776 |
-
alt="Sam-large-2"
|
| 777 |
-
style="max-width: 300px; border-radius: 12px; margin: 1rem auto; display: block; box-shadow: 0 4px 16px rgba(0,0,0,0.15);">
|
| 778 |
-
<h1>π€ Sam-large-2 Chat</h1>
|
| 779 |
-
<p>Advanced Reasoning Model with Chain-of-Thought support.</p>
|
| 780 |
-
<p style="font-size: 0.9rem; margin-top: 0.5rem;">
|
| 781 |
-
768D β’ 16 Layers β’ 12 Heads β’ Trained on TPU v5e-8
|
| 782 |
-
</p>
|
| 783 |
-
</div>
|
| 784 |
-
""")
|
| 785 |
-
|
| 786 |
|
| 787 |
with gr.Row():
|
| 788 |
with gr.Column(scale=4):
|
|
@@ -791,144 +545,74 @@ This is the final, direct answer.
|
|
| 791 |
avatar_images=(None, "https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/KtiMi-aDUOOeN--YNT-Fu.jpeg"),
|
| 792 |
bubble_full_width=False
|
| 793 |
)
|
| 794 |
-
|
| 795 |
with gr.Row():
|
| 796 |
with gr.Column(min_width=0, scale=0, elem_id="reasoning-control-group"):
|
| 797 |
reasoning_btn = gr.Button("π‘", size="sm", elem_id="reasoning-toggle-btn", elem_classes=["off"])
|
| 798 |
gr.HTML('<span class="new-tag-red">NEW</span>')
|
| 799 |
-
|
| 800 |
msg = gr.Textbox(placeholder="Type your message here...", show_label=False, scale=8, container=False)
|
| 801 |
submit_btn = gr.Button("Send π" if FESTIVE else "Send", variant="primary", scale=1)
|
| 802 |
stop_btn = gr.Button("βΉοΈ Stop", variant="stop", scale=1)
|
| 803 |
-
|
| 804 |
with gr.Row():
|
| 805 |
clear_btn = gr.Button("ποΈ Clear Chat", size="sm")
|
| 806 |
retry_btn = gr.Button("π Retry", size="sm")
|
| 807 |
|
| 808 |
with gr.Column(scale=1):
|
| 809 |
gr.Markdown("### βοΈ Generation Settings")
|
| 810 |
-
max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=50, label="Max Tokens"
|
| 811 |
-
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature"
|
| 812 |
-
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-K"
|
| 813 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P"
|
| 814 |
-
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty"
|
| 815 |
gr.Markdown("---")
|
| 816 |
-
gr.Markdown(f"""
|
| 817 |
-
### π Sam-large-2 Model Info
|
| 818 |
-
**π― The Reasoning Core!**
|
| 819 |
**Type:** Chain-of-Thought Reasoning Model
|
| 820 |
-
**Parameters:** ~313M
|
| 821 |
-
**Context:** {config['max_position_embeddings']} tokens
|
| 822 |
**Vocab:** {config['vocab_size']}
|
| 823 |
**Reasoning:** Full CoT support (uses **<think>** tags)
|
| 824 |
-
**Feature:** Reasoning toggle available! (Top-left of input box)
|
| 825 |
-
**Architecture:**
|
| 826 |
-
- RoPE positional encoding
|
| 827 |
-
- SwiGLU activation
|
| 828 |
-
- RMSNorm layers
|
| 829 |
-
- No bias terms (efficient!)
|
| 830 |
""")
|
| 831 |
|
| 832 |
-
|
| 833 |
-
gr.Examples(
|
| 834 |
-
examples=[
|
| 835 |
-
"Hi! What can you do?",
|
| 836 |
-
"Explain quantum computing in simple terms",
|
| 837 |
-
"Write a short poem about AI",
|
| 838 |
-
"Why is Sam-large-2 considered a reasoning model?",
|
| 839 |
-
"Tell me a step-by-step method for solving a math problem.",
|
| 840 |
-
],
|
| 841 |
-
inputs=msg,
|
| 842 |
-
label="π― Try these examples!"
|
| 843 |
-
)
|
| 844 |
|
| 845 |
-
# Footer - Ensure this is a clean multi-line string
|
| 846 |
gr.HTML("""
|
| 847 |
<footer>
|
| 848 |
-
<p
|
| 849 |
-
<p
|
| 850 |
-
<p style="font-size: 0.9rem; color: #999; margin-top: 0.5rem;">
|
| 851 |
-
Trained from scratch on TPU v5e-8 β’ Built by Smily studios with TensorFlow & Gradio
|
| 852 |
-
</p>
|
| 853 |
-
<p style="font-size: 0.9rem; color: #999;">
|
| 854 |
-
Uses **<think>** tags for reasoning when enabled.
|
| 855 |
-
</p>
|
| 856 |
-
<div style="margin-top: 1rem; font-size: 1.5rem;">
|
| 857 |
-
β‘ π π« β¨ π―
|
| 858 |
-
</div>
|
| 859 |
</footer>
|
| 860 |
""")
|
| 861 |
|
| 862 |
-
# --- JavaScript to show modal on first load ---
|
| 863 |
def show_modal_js():
|
| 864 |
return """
|
| 865 |
(function() {
|
| 866 |
if (sessionStorage.getItem('sam2_modal_shown') !== 'true') {
|
| 867 |
const modal = document.getElementById('welcome-modal');
|
| 868 |
-
if (modal) {
|
| 869 |
-
modal.style.display = 'flex';
|
| 870 |
-
sessionStorage.setItem('sam2_modal_shown', 'true');
|
| 871 |
-
}
|
| 872 |
}
|
| 873 |
})();
|
| 874 |
"""
|
| 875 |
-
|
| 876 |
-
# Execute the JavaScript function on page load
|
| 877 |
demo.load(None, inputs=None, outputs=None, js=show_modal_js())
|
| 878 |
|
| 879 |
-
|
| 880 |
-
# Reasoning Toggle function
|
| 881 |
def toggle_reasoning(current_state):
|
| 882 |
new_state = not current_state
|
| 883 |
-
|
| 884 |
-
return new_state, gr.update(elem_classes=btn_class)
|
| 885 |
-
|
| 886 |
-
# Reasoning Toggle Event Handler
|
| 887 |
-
reasoning_btn.click(
|
| 888 |
-
fn=toggle_reasoning,
|
| 889 |
-
inputs=[reasoning_enabled],
|
| 890 |
-
outputs=[reasoning_enabled, reasoning_btn],
|
| 891 |
-
preprocess=False
|
| 892 |
-
)
|
| 893 |
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
inputs=[msg, chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled],
|
| 898 |
-
outputs=[chatbot]
|
| 899 |
-
).then(lambda: "", outputs=[msg])
|
| 900 |
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
inputs=[msg, chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled],
|
| 904 |
-
outputs=[chatbot]
|
| 905 |
-
).then(lambda: "", outputs=[msg])
|
| 906 |
|
| 907 |
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[submit_event, click_event])
|
| 908 |
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
|
| 909 |
|
| 910 |
def retry_last(history, max_tok, temp, topk, topp, rep_pen, reasoning_en):
|
| 911 |
-
if not history:
|
| 912 |
-
return history
|
| 913 |
last_user_msg = history[-1][0]
|
| 914 |
-
|
| 915 |
-
for update in chat_stream(last_user_msg, history, max_tok, temp, topk, topp, rep_pen, reasoning_en):
|
| 916 |
yield update
|
| 917 |
-
|
| 918 |
-
retry_event = retry_btn.click(
|
| 919 |
-
retry_last,
|
| 920 |
-
inputs=[chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled],
|
| 921 |
-
outputs=[chatbot]
|
| 922 |
-
)
|
| 923 |
-
|
| 924 |
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[retry_event])
|
| 925 |
|
| 926 |
-
# Launch
|
| 927 |
if __name__ == "__main__":
|
| 928 |
demo.queue(max_size=20)
|
| 929 |
-
demo.launch(
|
| 930 |
-
server_name="0.0.0.0",
|
| 931 |
-
server_port=7860,
|
| 932 |
-
share=False,
|
| 933 |
-
show_error=True
|
| 934 |
-
)
|
|
|
|
| 11 |
# ============================================================================
|
| 12 |
# π FESTIVE MODE TOGGLE π
|
| 13 |
# ============================================================================
|
| 14 |
+
FESTIVE = True
|
| 15 |
|
| 16 |
# ============================================================================
|
| 17 |
+
# Configuration & Model Loading
|
| 18 |
# ============================================================================
|
| 19 |
|
| 20 |
print("π Loading Sam-large-2 Model...")
|
|
|
|
| 39 |
super().build(input_shape)
|
| 40 |
|
| 41 |
def _build_cache(self):
|
|
|
|
| 42 |
if not self.built_cache:
|
| 43 |
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
|
| 44 |
t = tf.range(self.max_len, dtype=tf.float32)
|
| 45 |
freqs = tf.einsum("i,j->ij", t, inv_freq)
|
| 46 |
emb = tf.concat([freqs, freqs], axis=-1)
|
|
|
|
|
|
|
| 47 |
self.cos_cached = tf.constant(np.cos(emb.numpy()), dtype=tf.float32)
|
| 48 |
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
|
| 49 |
self.built_cache = True
|
|
|
|
| 54 |
|
| 55 |
def call(self, q, k):
|
| 56 |
self._build_cache()
|
|
|
|
| 57 |
seq_len = tf.shape(q)[2]
|
| 58 |
dtype = q.dtype
|
| 59 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 60 |
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 61 |
+
return (q * cos) + (self.rotate_half(q) * sin), (k * cos) + (self.rotate_half(k) * sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def get_config(self):
|
| 64 |
config = super().get_config()
|
|
|
|
| 100 |
|
| 101 |
self.pre_attn_norm = RMSNorm()
|
| 102 |
self.pre_ffn_norm = RMSNorm()
|
|
|
|
| 103 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
|
| 104 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
|
| 105 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
|
| 106 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
|
|
|
|
| 107 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
|
|
|
| 108 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
|
| 109 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
|
| 110 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
|
|
|
|
| 111 |
self.dropout = keras.layers.Dropout(dropout)
|
| 112 |
|
| 113 |
def call(self, x, training=None):
|
| 114 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 115 |
dtype = x.dtype
|
|
|
|
|
|
|
| 116 |
res = x
|
| 117 |
y = self.pre_attn_norm(x)
|
|
|
|
| 118 |
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 119 |
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 120 |
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
|
|
|
| 121 |
q, k = self.rope(q, k)
|
|
|
|
| 122 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 123 |
+
mask = tf.where(tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0, tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
scores += mask
|
| 125 |
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
|
|
|
|
| 126 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 127 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
|
|
|
|
|
|
| 128 |
res = x
|
| 129 |
y = self.pre_ffn_norm(x)
|
| 130 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
|
|
| 131 |
return res + self.dropout(ffn, training=training)
|
| 132 |
|
| 133 |
def get_config(self):
|
| 134 |
config = super().get_config()
|
| 135 |
+
config.update({"d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim, "dropout": self.dropout_rate, "max_len": self.max_len, "rope_theta": self.rope_theta, "layer_idx": self.layer_idx})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
return config
|
| 137 |
|
| 138 |
|
|
|
|
| 148 |
self.cfg = kwargs.get('cfg', kwargs)
|
| 149 |
|
| 150 |
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
|
|
|
|
| 151 |
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
|
| 152 |
+
block_args = {'d_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'], 'ff_dim': ff_dim, 'dropout': self.cfg['dropout'], 'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
self.blocks = []
|
| 154 |
for i in range(self.cfg['n_layers']):
|
| 155 |
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
|
| 156 |
self.blocks.append(block)
|
|
|
|
| 157 |
self.norm = RMSNorm(name="final_norm")
|
| 158 |
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
|
| 159 |
|
| 160 |
def call(self, input_ids, training=None):
|
| 161 |
x = self.embed(input_ids)
|
|
|
|
| 162 |
for block in self.blocks:
|
| 163 |
x = block(x, training=training)
|
|
|
|
| 164 |
return self.lm_head(self.norm(x))
|
| 165 |
|
| 166 |
def get_config(self):
|
|
|
|
| 170 |
|
| 171 |
# --- Model and Tokenizer Loading ---
|
| 172 |
|
|
|
|
| 173 |
config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR)
|
| 174 |
|
|
|
|
| 175 |
try:
|
| 176 |
weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR)
|
| 177 |
print("β
Found checkpoint weights (ckpt.weights.h5)")
|
|
|
|
| 183 |
use_checkpoint = False
|
| 184 |
except Exception as e_model:
|
| 185 |
print(f"β Also failed to find model.keras: {e_model}")
|
|
|
|
|
|
|
| 186 |
|
|
|
|
| 187 |
with open(config_path, 'r') as f:
|
| 188 |
config = json.load(f)
|
| 189 |
|
|
|
|
| 190 |
from transformers import AutoTokenizer
|
| 191 |
|
| 192 |
hf_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
|
|
|
| 197 |
tokenizer = Tokenizer.from_file("./temp_tokenizer/tokenizer.json")
|
| 198 |
|
| 199 |
print(f"β
Tokenizer created with vocab size: {tokenizer.get_vocab_size()}")
|
|
|
|
| 200 |
eos_token_id = config.get('eos_token_id', 50256)
|
| 201 |
|
|
|
|
|
|
|
|
|
|
| 202 |
print("\nπ Loading model...")
|
| 203 |
|
| 204 |
model = None
|
| 205 |
|
| 206 |
if use_checkpoint:
|
| 207 |
print("π¦ Building model from config and loading checkpoint weights...")
|
|
|
|
| 208 |
model_config = {
|
| 209 |
'vocab_size': config['vocab_size'],
|
| 210 |
'd_model': config['hidden_size'],
|
|
|
|
| 215 |
'dropout': 0.1,
|
| 216 |
'rope_theta': config['rope_theta']
|
| 217 |
}
|
|
|
|
| 218 |
model = SAM1Model(config=model_config)
|
|
|
|
|
|
|
| 219 |
dummy_input = tf.zeros((1, config['max_position_embeddings']), dtype=tf.int32)
|
| 220 |
_ = model(dummy_input, training=False)
|
|
|
|
| 221 |
print(f"β
Model architecture built: {model.count_params():,} parameters")
|
|
|
|
| 222 |
try:
|
| 223 |
model.load_weights(weights_path)
|
| 224 |
print("β
Checkpoint weights loaded successfully!")
|
| 225 |
except Exception as e:
|
| 226 |
print(f"β Failed to load checkpoint weights: {e}")
|
|
|
|
| 227 |
else:
|
| 228 |
print("π¦ Loading full saved model...")
|
| 229 |
try:
|
| 230 |
+
custom_objects = {'SAM1Model': SAM1Model, 'TransformerBlock': TransformerBlock, 'RMSNorm': RMSNorm, 'RotaryEmbedding': RotaryEmbedding}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
model = keras.models.load_model(model_path, compile=False, custom_objects=custom_objects)
|
| 232 |
print("β
Model loaded successfully")
|
| 233 |
except Exception as e:
|
| 234 |
print(f"β Failed to load model: {e}")
|
|
|
|
|
|
|
| 235 |
|
| 236 |
if model:
|
| 237 |
print(f"β
Model loaded: {config['num_hidden_layers']} layers, {config['vocab_size']} vocab")
|
| 238 |
|
|
|
|
|
|
|
|
|
|
| 239 |
# ============================================================================
|
| 240 |
+
# Optimized Inference Logic (TF Functions)
|
| 241 |
# ============================================================================
|
| 242 |
|
| 243 |
+
# Define fast forward for real generation
|
| 244 |
+
@tf.function(reduce_retracing=True)
|
| 245 |
+
def fast_forward(input_tensor):
|
| 246 |
+
return model(input_tensor, training=False)
|
| 247 |
+
|
| 248 |
+
stop_generation = False
|
| 249 |
|
| 250 |
def generate_stream(
|
| 251 |
prompt: str,
|
|
|
|
| 255 |
top_p: float = 0.9,
|
| 256 |
repetition_penalty: float = 1.1
|
| 257 |
):
|
| 258 |
+
"""Generate text with streaming output using REAL model inference"""
|
| 259 |
global stop_generation
|
| 260 |
stop_generation = False
|
| 261 |
|
| 262 |
+
# Tokenize prompt
|
| 263 |
prompt_ids = tokenizer.encode(prompt).ids
|
| 264 |
input_ids = [i for i in prompt_ids if i != eos_token_id]
|
| 265 |
|
| 266 |
+
input_tensor = tf.constant([input_ids], dtype=tf.int32)
|
| 267 |
generated_text = ""
|
| 268 |
token_count = 0
|
| 269 |
+
token_freq = {}
|
| 270 |
|
| 271 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
# --- REAL INFERENCE LOOP ---
|
| 274 |
+
for step in range(max_tokens):
|
| 275 |
if stop_generation:
|
| 276 |
+
yield generated_text + "\n\n*[Generation stopped]*"
|
| 277 |
break
|
| 278 |
|
| 279 |
+
# 1. Forward Pass (Real Model)
|
| 280 |
+
logits = fast_forward(input_tensor)
|
| 281 |
+
next_token_logits = logits[0, -1, :].numpy()
|
| 282 |
+
|
| 283 |
+
# 2. Temperature
|
| 284 |
+
next_token_logits = next_token_logits / temperature
|
| 285 |
+
|
| 286 |
+
# 3. Repetition Penalty
|
| 287 |
+
if repetition_penalty != 1.0:
|
| 288 |
+
for token_id, freq in token_freq.items():
|
| 289 |
+
if token_id < len(next_token_logits):
|
| 290 |
+
next_token_logits[token_id] /= (repetition_penalty ** freq)
|
| 291 |
+
|
| 292 |
+
# 4. Sampling (Top-K / Top-P)
|
| 293 |
+
# Top-K
|
| 294 |
+
if top_k > 0:
|
| 295 |
+
top_k_indices = np.argpartition(next_token_logits, -top_k)[-top_k:]
|
| 296 |
+
top_k_logits = next_token_logits[top_k_indices]
|
| 297 |
+
top_k_probs = tf.nn.softmax(top_k_logits).numpy()
|
| 298 |
+
|
| 299 |
+
# Top-P (Nucleus)
|
| 300 |
+
if top_p < 1.0:
|
| 301 |
+
sorted_indices = np.argsort(top_k_probs)[::-1]
|
| 302 |
+
cumsum = np.cumsum(top_k_probs[sorted_indices])
|
| 303 |
+
cutoff_idx = np.searchsorted(cumsum, top_p)
|
| 304 |
+
nucleus_indices = sorted_indices[:cutoff_idx + 1]
|
| 305 |
+
|
| 306 |
+
nucleus_logits = top_k_logits[nucleus_indices]
|
| 307 |
+
nucleus_probs = tf.nn.softmax(nucleus_logits).numpy()
|
| 308 |
+
|
| 309 |
+
sampled_idx = np.random.choice(len(nucleus_probs), p=nucleus_probs)
|
| 310 |
+
next_token_id = int(top_k_indices[nucleus_indices[sampled_idx]])
|
| 311 |
+
else:
|
| 312 |
+
sampled_idx = np.random.choice(len(top_k_probs), p=top_k_probs)
|
| 313 |
+
next_token_id = int(top_k_indices[sampled_idx])
|
| 314 |
else:
|
| 315 |
+
probs = tf.nn.softmax(next_token_logits).numpy()
|
| 316 |
+
next_token_id = np.random.choice(len(probs), p=probs)
|
| 317 |
|
| 318 |
+
# 5. Stop Conditions
|
| 319 |
+
if next_token_id == eos_token_id or \
|
| 320 |
+
next_token_id == tokenizer.token_to_id("<|im_end|>") or \
|
| 321 |
+
next_token_id == tokenizer.token_to_id("<im end for model tun>"):
|
| 322 |
break
|
| 323 |
+
|
| 324 |
+
# 6. Update Input & History
|
| 325 |
+
token_freq[next_token_id] = token_freq.get(next_token_id, 0) + 1
|
| 326 |
|
| 327 |
+
token_text = tokenizer.decode([next_token_id])
|
| 328 |
+
generated_text += token_text
|
| 329 |
token_count += 1
|
| 330 |
|
| 331 |
+
yield generated_text
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
+
# Prepare next input
|
| 334 |
+
input_tensor = tf.concat([input_tensor, [[next_token_id]]], axis=1)
|
| 335 |
|
| 336 |
+
# Truncate if exceeding context
|
| 337 |
+
if input_tensor.shape[1] > config['max_position_embeddings']:
|
| 338 |
+
input_tensor = input_tensor[:, -config['max_position_embeddings']:]
|
| 339 |
+
|
| 340 |
elapsed = time.time() - start_time
|
| 341 |
tokens_per_sec = token_count / elapsed if elapsed > 0 else 0
|
| 342 |
|
|
|
|
| 350 |
# ============================================================================
|
| 351 |
|
| 352 |
def format_chat_prompt(message: str, history: list, reasoning_enabled: bool) -> str:
|
| 353 |
+
"""Format message history and SEED <think> if enabled"""
|
| 354 |
prompt = ""
|
|
|
|
|
|
|
| 355 |
for user_msg, assistant_msg in history:
|
| 356 |
prompt += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
| 357 |
if assistant_msg:
|
| 358 |
prompt += f"<|im_start|>assistant\n{assistant_msg}<|im_end|>\n"
|
| 359 |
|
|
|
|
| 360 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 361 |
|
| 362 |
+
# π§ REAL REASONING: Just add the tag. The model will do the rest.
|
| 363 |
if reasoning_enabled:
|
| 364 |
prompt += "<think>"
|
| 365 |
|
|
|
|
| 375 |
repetition_penalty: float,
|
| 376 |
reasoning_enabled: bool
|
| 377 |
):
|
|
|
|
| 378 |
if not message.strip():
|
| 379 |
yield history
|
| 380 |
return
|
|
|
|
| 382 |
prompt = format_chat_prompt(message, history, reasoning_enabled)
|
| 383 |
partial_response = ""
|
| 384 |
|
| 385 |
+
# β‘ NO FAKE REASONING HERE. We trust the model.
|
| 386 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
for generated in generate_stream(
|
| 388 |
prompt, max_tokens, temperature, top_k, top_p, repetition_penalty
|
| 389 |
):
|
| 390 |
partial_response = generated
|
| 391 |
|
| 392 |
+
# Robust End-of-Turn Detection
|
| 393 |
stop_tags = ["<|im_end|>", "<im end for model tun>"]
|
| 394 |
earliest_stop = len(partial_response)
|
| 395 |
should_stop = False
|
|
|
|
| 402 |
if should_stop:
|
| 403 |
partial_response = partial_response[:earliest_stop]
|
| 404 |
|
| 405 |
+
# Post-process reasoning tags for display (Collapsing the REAL thought)
|
| 406 |
if reasoning_enabled:
|
|
|
|
| 407 |
if '<think>' in partial_response and '</think>' in partial_response:
|
| 408 |
start_idx = partial_response.find('<think>')
|
| 409 |
end_idx = partial_response.find('</think>')
|
| 410 |
if start_idx != -1 and end_idx != -1 and end_idx > start_idx:
|
| 411 |
thought_content = partial_response[start_idx + len('<think>'):end_idx].strip()
|
| 412 |
+
|
| 413 |
+
# Safe formatting outside f-string
|
| 414 |
+
formatted_thought = thought_content.replace("\n", "<br>")
|
| 415 |
+
|
| 416 |
details_html = (
|
| 417 |
f'<details class="reasoning-block">'
|
| 418 |
f'<summary>Model Reasoning (Click to show/hide)</summary>'
|
| 419 |
+
f'<p>{formatted_thought}</p>'
|
| 420 |
f'</details>'
|
| 421 |
)
|
| 422 |
partial_response = partial_response[:start_idx] + details_html + partial_response[end_idx + len('</think>'):]
|
| 423 |
elif start_idx != -1 and end_idx == -1:
|
| 424 |
+
# Model is currently thinking...
|
| 425 |
+
partial_response = partial_response.replace('<think>', '**Thinking:** ')
|
| 426 |
|
|
|
|
| 427 |
yield history + [[message, partial_response.strip()]]
|
| 428 |
|
| 429 |
def stop_gen():
|
|
|
|
| 430 |
global stop_generation
|
| 431 |
stop_generation = True
|
| 432 |
return None
|
| 433 |
|
| 434 |
# ============================================================================
|
| 435 |
+
# Gradio UI
|
| 436 |
# ============================================================================
|
| 437 |
|
| 438 |
custom_css = """
|
| 439 |
+
.gradio-container { max-width: 1200px !important; margin: auto !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
.header {
|
| 441 |
+
text-align: center; padding: 2rem; background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
| 442 |
+
color: white; border-radius: 12px; margin-bottom: 2rem; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
animation: pulse 2s ease-in-out infinite;
|
| 444 |
}
|
| 445 |
+
@keyframes pulse { 0%, 100% { transform: scale(1); } 50% { transform: scale(1.02); } }
|
| 446 |
+
.header h1 { font-size: 2.8rem; margin-bottom: 0.5rem; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.2); }
|
| 447 |
+
.header p { font-size: 1.1rem; opacity: 0.95; }
|
| 448 |
+
.celebration { font-size: 2rem; margin: 0.5rem; animation: bounce 1s ease infinite; }
|
| 449 |
+
@keyframes bounce { 0%, 100% { transform: translateY(0); } 50% { transform: translateY(-10px); } }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
.twin-badge {
|
| 451 |
+
display: inline-block; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 452 |
+
color: white; padding: 0.5rem 1rem; border-radius: 20px; font-weight: bold; margin: 0.5rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
|
| 454 |
}
|
| 455 |
+
footer { text-align: center; padding: 2rem; color: #666; border-top: 1px solid #eee; margin-top: 2rem; }
|
| 456 |
+
#reasoning-control-group { position: relative; display: flex; align-items: center; justify-content: center; margin-right: 10px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
#reasoning-toggle-btn {
|
| 458 |
+
font-size: 1.5rem; border-radius: 50%; width: 40px; height: 40px; padding: 0;
|
| 459 |
+
min-width: 0 !important; line-height: 1; background-color: #ffcc00; border: 2px solid #e6b800;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
}
|
| 461 |
+
#reasoning-toggle-btn.off { background-color: #e0e0e0; border: 2px solid #ccc; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
.new-tag-red {
|
| 463 |
+
display: inline-block; background-color: #f5576c; color: white; font-size: 0.7em;
|
| 464 |
+
font-weight: bold; padding: 2px 5px; border-radius: 4px; line-height: 1;
|
| 465 |
+
position: absolute; top: -5px; right: -5px; z-index: 10; animation: blink 1s infinite;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
}
|
| 467 |
+
@keyframes blink { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
.gradio-html details.reasoning-block {
|
| 469 |
+
border: 1px solid #ddd; border-left: 5px solid #667eea; padding: 5px 10px;
|
| 470 |
+
margin: 10px 0; border-radius: 4px; background-color: #f9f9ff;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
}
|
| 472 |
+
.gradio-html details.reasoning-block summary { font-weight: bold; cursor: pointer; outline: none; color: #667eea; }
|
| 473 |
+
.gradio-html details.reasoning-block p { margin-top: 5px; padding-left: 10px; border-left: 1px dashed #ccc; white-space: pre-wrap; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
.modal-overlay {
|
| 475 |
+
position: fixed; top: 0; left: 0; right: 0; bottom: 0; background: rgba(0, 0, 0, 0.7);
|
| 476 |
+
display: flex; justify-content: center; align-items: center; z-index: 1000;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
}
|
|
|
|
| 478 |
.modal-content {
|
| 479 |
+
background: white; padding: 30px; border-radius: 15px; width: 90%; max-width: 900px;
|
| 480 |
+
box-shadow: 0 10px 50px rgba(0, 0, 0, 0.5); animation: slide-in 0.5s ease-out;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
}
|
| 482 |
+
@keyframes slide-in { from { transform: translateY(-50px); opacity: 0; } to { transform: translateY(0); opacity: 1; } }
|
| 483 |
+
.modal-content h2 { color: #764ba2; border-bottom: 2px solid #eee; padding-bottom: 10px; margin-top: 0; }
|
| 484 |
+
.comparison-box { display: flex; gap: 20px; margin-top: 20px; }
|
| 485 |
+
.comparison-mode { flex: 1; padding: 15px; border-radius: 10px; }
|
| 486 |
+
.mode-reasoning { border: 2px solid #667eea; background-color: #f6f7ff; }
|
| 487 |
+
.mode-direct { border: 2px solid #fcb69f; background-color: #fffaf5; }
|
| 488 |
+
.comparison-mode h3 { margin-top: 0; font-size: 1.3rem; }
|
| 489 |
+
.comparison-mode pre { background-color: #eef; padding: 10px; border-radius: 5px; overflow-x: auto; }
|
| 490 |
.close-btn {
|
| 491 |
+
margin-top: 20px; padding: 10px 20px; background-color: #764ba2; color: white;
|
| 492 |
+
border: none; border-radius: 8px; cursor: pointer; font-size: 1rem; transition: background-color 0.3s;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
}
|
| 494 |
+
.close-btn:hover { background-color: #5d3a84; }
|
| 495 |
"""
|
| 496 |
|
| 497 |
festive_css = custom_css
|
| 498 |
custom_css = festive_css
|
| 499 |
|
|
|
|
| 500 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 501 |
reasoning_enabled = gr.State(False)
|
| 502 |
modal_shown = gr.State(False)
|
| 503 |
|
|
|
|
| 504 |
welcome_modal_html = gr.HTML(
|
| 505 |
"""
|
| 506 |
<div id="welcome-modal" class="modal-overlay" style="display:none;">
|
| 507 |
<div class="modal-content">
|
| 508 |
<h2>π§ Welcome to Sam-large-2: Dual-Mode Reasoning Demo</h2>
|
| 509 |
<p>Our latest model, **Sam-large-2**, features **Chain-of-Thought (CoT)** functionality. You can toggle this feature using the π‘ button next to the input field.</p>
|
|
|
|
| 510 |
<div class="comparison-box">
|
| 511 |
<div class="comparison-mode mode-reasoning">
|
| 512 |
<h3>π‘ Reasoning Mode (ON)</h3>
|
| 513 |
+
<p>The model performs a **CoT step** first. The internal thought process is contained within the <code><think>...</think></code> tags.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
</div>
|
| 515 |
<div class="comparison-mode mode-direct">
|
| 516 |
<h3>βͺ Direct Mode (OFF)</h3>
|
| 517 |
+
<p>The model generates the final answer immediately, maximizing speed.</p>
|
|
|
|
|
|
|
|
|
|
| 518 |
</div>
|
| 519 |
</div>
|
| 520 |
<button class="close-btn" onclick="document.getElementById('welcome-modal').style.display='none'">Got it! Start Chatting</button>
|
|
|
|
| 523 |
"""
|
| 524 |
)
|
| 525 |
|
|
|
|
| 526 |
if FESTIVE:
|
| 527 |
gr.HTML("""
|
| 528 |
<div class="header">
|
| 529 |
<div class="celebration">π π β¨ π π</div>
|
| 530 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/yBUDdaTze1L84NaDSpZGf.jpeg"
|
| 531 |
+
alt="Sam-large-2" style="max-width: 400px; border-radius: 12px; margin: 1rem auto; display: block; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3);">
|
|
|
|
| 532 |
<h1>π€ Sam-large-2 Chat π€</h1>
|
| 533 |
<p><strong>LATEST RELEASE!</strong> Our **BEST Reasoning Model** - Full Chain-of-Thought!</p>
|
| 534 |
<div class="twin-badge">Reasoning Model</div>
|
|
|
|
|
|
|
|
|
|
| 535 |
<div class="celebration">π π« π― β‘ π₯</div>
|
| 536 |
</div>
|
| 537 |
""")
|
| 538 |
else:
|
| 539 |
+
gr.HTML("""<div class="header"><h1>π€ Sam-large-2 Chat</h1><p>Advanced Reasoning Model</p></div>""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
with gr.Row():
|
| 542 |
with gr.Column(scale=4):
|
|
|
|
| 545 |
avatar_images=(None, "https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/KtiMi-aDUOOeN--YNT-Fu.jpeg"),
|
| 546 |
bubble_full_width=False
|
| 547 |
)
|
|
|
|
| 548 |
with gr.Row():
|
| 549 |
with gr.Column(min_width=0, scale=0, elem_id="reasoning-control-group"):
|
| 550 |
reasoning_btn = gr.Button("π‘", size="sm", elem_id="reasoning-toggle-btn", elem_classes=["off"])
|
| 551 |
gr.HTML('<span class="new-tag-red">NEW</span>')
|
|
|
|
| 552 |
msg = gr.Textbox(placeholder="Type your message here...", show_label=False, scale=8, container=False)
|
| 553 |
submit_btn = gr.Button("Send π" if FESTIVE else "Send", variant="primary", scale=1)
|
| 554 |
stop_btn = gr.Button("βΉοΈ Stop", variant="stop", scale=1)
|
|
|
|
| 555 |
with gr.Row():
|
| 556 |
clear_btn = gr.Button("ποΈ Clear Chat", size="sm")
|
| 557 |
retry_btn = gr.Button("π Retry", size="sm")
|
| 558 |
|
| 559 |
with gr.Column(scale=1):
|
| 560 |
gr.Markdown("### βοΈ Generation Settings")
|
| 561 |
+
max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=50, label="Max Tokens")
|
| 562 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature")
|
| 563 |
+
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-K")
|
| 564 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
|
| 565 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty")
|
| 566 |
gr.Markdown("---")
|
| 567 |
+
gr.Markdown(f"""### π Sam-large-2 Model Info
|
|
|
|
|
|
|
| 568 |
**Type:** Chain-of-Thought Reasoning Model
|
|
|
|
|
|
|
| 569 |
**Vocab:** {config['vocab_size']}
|
| 570 |
**Reasoning:** Full CoT support (uses **<think>** tags)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
""")
|
| 572 |
|
| 573 |
+
gr.Examples(examples=["Explain quantum computing", "Write a short poem about AI", "Solve 24*12 with reasoning"], inputs=msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
|
|
|
| 575 |
gr.HTML("""
|
| 576 |
<footer>
|
| 577 |
+
<p><strong>π Sam-large-2 - LATEST RELEASE! π</strong></p>
|
| 578 |
+
<p style="font-size: 0.9rem; color: #999;">Trained from scratch on TPU v5e-8 β’ Built by Smily studios with TensorFlow & Gradio</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
</footer>
|
| 580 |
""")
|
| 581 |
|
|
|
|
| 582 |
def show_modal_js():
|
| 583 |
return """
|
| 584 |
(function() {
|
| 585 |
if (sessionStorage.getItem('sam2_modal_shown') !== 'true') {
|
| 586 |
const modal = document.getElementById('welcome-modal');
|
| 587 |
+
if (modal) { modal.style.display = 'flex'; sessionStorage.setItem('sam2_modal_shown', 'true'); }
|
|
|
|
|
|
|
|
|
|
| 588 |
}
|
| 589 |
})();
|
| 590 |
"""
|
|
|
|
|
|
|
| 591 |
demo.load(None, inputs=None, outputs=None, js=show_modal_js())
|
| 592 |
|
|
|
|
|
|
|
| 593 |
def toggle_reasoning(current_state):
|
| 594 |
new_state = not current_state
|
| 595 |
+
return new_state, gr.update(elem_classes="" if new_state else "off")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
+
reasoning_btn.click(fn=toggle_reasoning, inputs=[reasoning_enabled], outputs=[reasoning_enabled, reasoning_btn], preprocess=False)
|
| 598 |
+
|
| 599 |
+
common_inputs = [msg, chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled]
|
|
|
|
|
|
|
|
|
|
| 600 |
|
| 601 |
+
submit_event = msg.submit(chat_stream, inputs=common_inputs, outputs=[chatbot]).then(lambda: "", outputs=[msg])
|
| 602 |
+
click_event = submit_btn.click(chat_stream, inputs=common_inputs, outputs=[chatbot]).then(lambda: "", outputs=[msg])
|
|
|
|
|
|
|
|
|
|
| 603 |
|
| 604 |
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[submit_event, click_event])
|
| 605 |
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
|
| 606 |
|
| 607 |
def retry_last(history, max_tok, temp, topk, topp, rep_pen, reasoning_en):
|
| 608 |
+
if not history: return history
|
|
|
|
| 609 |
last_user_msg = history[-1][0]
|
| 610 |
+
for update in chat_stream(last_user_msg, history[:-1], max_tok, temp, topk, topp, rep_pen, reasoning_en):
|
|
|
|
| 611 |
yield update
|
| 612 |
+
|
| 613 |
+
retry_event = retry_btn.click(retry_last, inputs=[chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled], outputs=[chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[retry_event])
|
| 615 |
|
|
|
|
| 616 |
if __name__ == "__main__":
|
| 617 |
demo.queue(max_size=20)
|
| 618 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|