Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,18 +18,16 @@ from datetime import datetime
|
|
| 18 |
import uuid
|
| 19 |
|
| 20 |
# ==============================================================================
|
| 21 |
-
# 1.
|
| 22 |
# ==============================================================================
|
| 23 |
-
# Optimized for CPU/GPU throughput
|
| 24 |
tf.config.threading.set_inter_op_parallelism_threads(2)
|
| 25 |
tf.config.threading.set_intra_op_parallelism_threads(4)
|
| 26 |
tf.config.optimizer.set_jit(True)
|
| 27 |
|
| 28 |
-
print(f"π SmilyAI System Initializing...")
|
| 29 |
-
print(f"π± TensorFlow Version: {tf.__version__}")
|
| 30 |
|
| 31 |
# ==============================================================================
|
| 32 |
-
# 2. Database
|
| 33 |
# ==============================================================================
|
| 34 |
def init_db():
|
| 35 |
conn = sqlite3.connect('sam_tasks.db', check_same_thread=False)
|
|
@@ -37,9 +35,7 @@ def init_db():
|
|
| 37 |
c.execute('''CREATE TABLE IF NOT EXISTS users
|
| 38 |
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 39 |
username TEXT UNIQUE NOT NULL,
|
| 40 |
-
password_hash TEXT NOT NULL
|
| 41 |
-
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)''')
|
| 42 |
-
|
| 43 |
c.execute('''CREATE TABLE IF NOT EXISTS tasks
|
| 44 |
(id TEXT PRIMARY KEY,
|
| 45 |
user_id INTEGER,
|
|
@@ -49,8 +45,6 @@ def init_db():
|
|
| 49 |
progress INTEGER DEFAULT 0,
|
| 50 |
result TEXT,
|
| 51 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 52 |
-
completed_at TIMESTAMP,
|
| 53 |
-
tokens_generated INTEGER DEFAULT 0,
|
| 54 |
tokens_per_sec REAL DEFAULT 0,
|
| 55 |
FOREIGN KEY (user_id) REFERENCES users(id))''')
|
| 56 |
conn.commit()
|
|
@@ -60,7 +54,7 @@ db_conn = init_db()
|
|
| 60 |
db_lock = threading.Lock()
|
| 61 |
|
| 62 |
# ==============================================================================
|
| 63 |
-
# 3.
|
| 64 |
# ==============================================================================
|
| 65 |
@keras.saving.register_keras_serializable()
|
| 66 |
class RotaryEmbedding(keras.layers.Layer):
|
|
@@ -81,41 +75,19 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 81 |
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
|
| 82 |
self.built_cache = True
|
| 83 |
|
| 84 |
-
def rotate_half(self, x):
|
| 85 |
-
x1, x2 = tf.split(x, 2, axis=-1)
|
| 86 |
-
return tf.concat([-x2, x1], axis=-1)
|
| 87 |
-
|
| 88 |
def call(self, q, k):
|
| 89 |
self._build_cache()
|
| 90 |
seq_len = tf.shape(q)[2]
|
| 91 |
-
cos = self.cos_cached[:seq_len, :]
|
| 92 |
-
sin = self.sin_cached[:seq_len, :]
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return
|
| 101 |
-
|
| 102 |
-
def get_config(self):
|
| 103 |
-
config = super().get_config()
|
| 104 |
-
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 105 |
-
return config
|
| 106 |
-
|
| 107 |
-
@keras.saving.register_keras_serializable()
|
| 108 |
-
class RMSNorm(keras.layers.Layer):
|
| 109 |
-
def __init__(self, epsilon=1e-5, **kwargs):
|
| 110 |
-
super().__init__(**kwargs)
|
| 111 |
-
self.epsilon = epsilon
|
| 112 |
-
|
| 113 |
-
def build(self, input_shape):
|
| 114 |
-
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
|
| 115 |
-
|
| 116 |
-
def call(self, x):
|
| 117 |
-
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
|
| 118 |
-
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
|
| 119 |
|
| 120 |
@keras.saving.register_keras_serializable()
|
| 121 |
class TransformerBlock(keras.layers.Layer):
|
|
@@ -124,25 +96,23 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 124 |
self.n_heads = n_heads
|
| 125 |
self.head_dim = d_model // n_heads
|
| 126 |
self.d_model = d_model
|
| 127 |
-
|
| 128 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
| 129 |
-
self.pre_attn_norm =
|
| 130 |
-
self.pre_ffn_norm =
|
| 131 |
-
|
| 132 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 133 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 134 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 135 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 136 |
-
|
| 137 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False)
|
| 138 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False)
|
| 139 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 140 |
self.dropout = keras.layers.Dropout(dropout)
|
| 141 |
|
| 142 |
def call(self, x, cache=None, training=None):
|
| 143 |
-
B
|
|
|
|
| 144 |
|
| 145 |
-
#
|
| 146 |
res = x
|
| 147 |
y = self.pre_attn_norm(x)
|
| 148 |
|
|
@@ -150,38 +120,43 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 150 |
k = tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim])
|
| 151 |
v = tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim])
|
| 152 |
|
| 153 |
-
# KV Cache
|
| 154 |
if cache is not None:
|
| 155 |
k_cache, v_cache = cache
|
| 156 |
k = tf.concat([k_cache, k], axis=1)
|
| 157 |
v = tf.concat([v_cache, v], axis=1)
|
| 158 |
-
|
| 159 |
new_cache = (k, v)
|
| 160 |
|
| 161 |
# RoPE
|
| 162 |
q = tf.transpose(q, [0, 2, 1, 3])
|
| 163 |
k_rot = tf.transpose(k, [0, 2, 1, 3])
|
| 164 |
v_t = tf.transpose(v, [0, 2, 1, 3])
|
| 165 |
-
|
| 166 |
q, k_rot = self.rope(q, k_rot)
|
| 167 |
|
| 168 |
-
#
|
| 169 |
scores = tf.matmul(q, k_rot, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, x.dtype))
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
mask = tf.linalg.band_part(tf.ones((T, T)), -1, 0)
|
| 173 |
-
|
| 174 |
-
scores += mask
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
attn = tf.nn.softmax(scores, axis=-1)
|
| 177 |
out = tf.matmul(attn, v_t)
|
| 178 |
-
|
| 179 |
-
out = tf.transpose(out, [0, 2, 1, 3])
|
| 180 |
-
out = tf.reshape(out, [B, T, self.d_model])
|
| 181 |
-
|
| 182 |
x = res + self.out_proj(out)
|
| 183 |
|
| 184 |
-
#
|
| 185 |
res = x
|
| 186 |
y = self.pre_ffn_norm(x)
|
| 187 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
@@ -194,84 +169,61 @@ class SAM1Model(keras.Model):
|
|
| 194 |
super().__init__(**kwargs)
|
| 195 |
self.embed = keras.layers.Embedding(config['vocab_size'], config['d_model'])
|
| 196 |
ff_dim = int(config['d_model'] * config['ff_mult'])
|
| 197 |
-
|
| 198 |
self.blocks = [
|
| 199 |
TransformerBlock(
|
| 200 |
config['d_model'], config['n_heads'], ff_dim, config['dropout'],
|
| 201 |
-
config['max_len'], config['rope_theta']
|
| 202 |
) for i in range(config['n_layers'])
|
| 203 |
]
|
| 204 |
-
self.norm =
|
| 205 |
self.lm_head = keras.layers.Dense(config['vocab_size'], use_bias=False)
|
| 206 |
|
| 207 |
def call(self, input_ids, cache=None, training=None):
|
| 208 |
x = self.embed(input_ids)
|
| 209 |
new_caches = []
|
| 210 |
-
|
| 211 |
for i, block in enumerate(self.blocks):
|
| 212 |
c_i = cache[i] if cache is not None else None
|
| 213 |
x, nc_i = block(x, cache=c_i, training=training)
|
| 214 |
new_caches.append(nc_i)
|
| 215 |
-
|
| 216 |
return self.lm_head(self.norm(x)), new_caches
|
| 217 |
|
| 218 |
# ==============================================================================
|
| 219 |
-
# 4. Load
|
| 220 |
# ==============================================================================
|
| 221 |
-
print("\nπ¦ Loading
|
| 222 |
|
| 223 |
dummy_in = tf.zeros((1, 1), dtype=tf.int32)
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
print("πΉ
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
samx_model
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
samz_wgt_path = hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "ckpt.weights.h5")
|
| 256 |
-
|
| 257 |
-
with open(samz_cfg_path) as f: cfg_z_json = json.load(f)
|
| 258 |
-
tokenizer_z = Tokenizer.from_file(samz_tok_path)
|
| 259 |
-
|
| 260 |
-
samz_model = SAM1Model({
|
| 261 |
-
'vocab_size': cfg_z_json['vocab_size'],
|
| 262 |
-
'd_model': cfg_z_json['hidden_size'],
|
| 263 |
-
'n_layers': cfg_z_json['num_hidden_layers'],
|
| 264 |
-
'n_heads': cfg_z_json['num_attention_heads'],
|
| 265 |
-
'ff_mult': cfg_z_json['intermediate_size'] / cfg_z_json['hidden_size'],
|
| 266 |
-
'max_len': cfg_z_json['max_position_embeddings'],
|
| 267 |
-
'dropout': 0.0,
|
| 268 |
-
'rope_theta': cfg_z_json['rope_theta']
|
| 269 |
-
})
|
| 270 |
-
_ = samz_model(dummy_in) # Build
|
| 271 |
-
samz_model.load_weights(samz_wgt_path)
|
| 272 |
-
print("β
SAM-Z-1 Ready")
|
| 273 |
-
|
| 274 |
-
# JIT Compilation
|
| 275 |
@tf.function(jit_compile=True)
|
| 276 |
def predict_x(ids, cache): return samx_model(ids, cache=cache, training=False)
|
| 277 |
|
|
@@ -279,199 +231,236 @@ def predict_x(ids, cache): return samx_model(ids, cache=cache, training=False)
|
|
| 279 |
def predict_z(ids, cache): return samz_model(ids, cache=cache, training=False)
|
| 280 |
|
| 281 |
# ==============================================================================
|
| 282 |
-
# 5.
|
| 283 |
# ==============================================================================
|
| 284 |
task_queue = queue.Queue()
|
| 285 |
-
db_lock = threading.Lock()
|
| 286 |
-
|
| 287 |
-
def create_task(uid, model, prompt):
|
| 288 |
-
tid = str(uuid.uuid4())
|
| 289 |
-
with db_lock:
|
| 290 |
-
c = db_conn.cursor()
|
| 291 |
-
c.execute("INSERT INTO tasks (id, user_id, model_name, prompt, status) VALUES (?,?,?,?,?)",
|
| 292 |
-
(tid, uid, model, prompt, 'queued'))
|
| 293 |
-
db_conn.commit()
|
| 294 |
-
task_queue.put((tid, model, prompt))
|
| 295 |
-
return tid
|
| 296 |
-
|
| 297 |
-
def update_task(tid, status, progress, result, tokens, tps):
|
| 298 |
-
with db_lock:
|
| 299 |
-
c = db_conn.cursor()
|
| 300 |
-
c.execute("UPDATE tasks SET status=?, progress=?, result=?, tokens_generated=?, tokens_per_sec=? WHERE id=?",
|
| 301 |
-
(status, progress, result, tokens, tps, tid))
|
| 302 |
-
if status in ['completed', 'failed']:
|
| 303 |
-
c.execute("UPDATE tasks SET completed_at=? WHERE id=?", (datetime.now().isoformat(), tid))
|
| 304 |
-
db_conn.commit()
|
| 305 |
-
|
| 306 |
-
def run_inference(tid, model_tag, prompt):
|
| 307 |
-
# Select Resources
|
| 308 |
-
if "SAM-X" in model_tag:
|
| 309 |
-
predict_fn = predict_x
|
| 310 |
-
tok = tokenizer_x
|
| 311 |
-
else:
|
| 312 |
-
predict_fn = predict_z
|
| 313 |
-
tok = tokenizer_z
|
| 314 |
-
|
| 315 |
-
try:
|
| 316 |
-
start_time = time.time()
|
| 317 |
-
ids = [i for i in tok.encode(prompt).ids]
|
| 318 |
-
generated = []
|
| 319 |
-
|
| 320 |
-
# 1. Prefill
|
| 321 |
-
curr_ids = tf.constant([ids], dtype=tf.int32)
|
| 322 |
-
logits, cache = predict_fn(curr_ids, cache=None)
|
| 323 |
-
next_token = np.argmax(logits[0, -1, :])
|
| 324 |
-
generated.append(next_token)
|
| 325 |
-
|
| 326 |
-
# 2. Decode
|
| 327 |
-
for step in range(1024):
|
| 328 |
-
curr_ids = tf.constant([[generated[-1]]], dtype=tf.int32)
|
| 329 |
-
logits, cache = predict_fn(curr_ids, cache=cache)
|
| 330 |
-
|
| 331 |
-
# Simple sampling
|
| 332 |
-
logits_np = logits[0, -1, :].numpy()
|
| 333 |
-
next_token = np.argmax(logits_np) # Greedy for speed
|
| 334 |
-
|
| 335 |
-
if next_token == 50256: # EOS
|
| 336 |
-
break
|
| 337 |
-
|
| 338 |
-
generated.append(next_token)
|
| 339 |
-
|
| 340 |
-
# Stream Update (every 4 tokens)
|
| 341 |
-
if step % 4 == 0:
|
| 342 |
-
txt = tok.decode(generated)
|
| 343 |
-
elapsed = time.time() - start_time
|
| 344 |
-
tps = len(generated) / elapsed if elapsed > 0 else 0
|
| 345 |
-
prog = int((step/1024)*100)
|
| 346 |
-
update_task(tid, 'processing', prog, txt, len(generated), tps)
|
| 347 |
-
|
| 348 |
-
# Final
|
| 349 |
-
txt = tok.decode(generated)
|
| 350 |
-
elapsed = time.time() - start_time
|
| 351 |
-
update_task(tid, 'completed', 100, txt, len(generated), len(generated)/elapsed)
|
| 352 |
-
|
| 353 |
-
except Exception as e:
|
| 354 |
-
print(f"β Task {tid} failed: {e}")
|
| 355 |
-
update_task(tid, 'failed', 0, str(e), 0, 0)
|
| 356 |
|
| 357 |
def worker():
|
| 358 |
while True:
|
| 359 |
try:
|
| 360 |
tid, model, prompt = task_queue.get(timeout=1)
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
task_queue.task_done()
|
| 364 |
-
except queue.Empty:
|
| 365 |
-
continue
|
| 366 |
|
| 367 |
-
|
| 368 |
-
for _ in range(2):
|
| 369 |
-
threading.Thread(target=worker, daemon=True).start()
|
| 370 |
|
| 371 |
# ==============================================================================
|
| 372 |
-
# 6.
|
| 373 |
# ==============================================================================
|
| 374 |
css = """
|
| 375 |
-
|
| 376 |
-
.
|
| 377 |
-
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
"""
|
| 379 |
|
| 380 |
-
def
|
| 381 |
if not text: return ""
|
| 382 |
-
#
|
| 383 |
if "<think>" in text:
|
| 384 |
parts = text.split("<think>")
|
| 385 |
pre = parts[0]
|
| 386 |
rest = parts[1]
|
| 387 |
if "</think>" in rest:
|
| 388 |
thought, ans = rest.split("</think>")
|
| 389 |
-
return f"{pre}<
|
| 390 |
-
|
| 391 |
-
return f"{pre}<div class='thought-box'>π§ <b>Thinking...</b><br>{rest}</div>"
|
| 392 |
return text.replace("\n", "<br>")
|
| 393 |
|
| 394 |
-
with gr.Blocks(css=css, title="SmilyAI Studio") as demo:
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
gr.Markdown("## π§ SmilyAI Studio")
|
| 398 |
|
| 399 |
-
with gr.Row():
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
def login(u, p):
|
| 419 |
-
|
| 420 |
with db_lock:
|
| 421 |
c = db_conn.cursor()
|
| 422 |
-
c.execute("SELECT id FROM users WHERE username=?
|
| 423 |
-
|
| 424 |
-
if not
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
def submit(uid, m, p):
|
| 434 |
-
if not uid: return None
|
| 435 |
-
tid = create_task(uid, m, p)
|
| 436 |
-
return tid
|
| 437 |
-
|
| 438 |
-
def get_history(uid):
|
| 439 |
-
if not uid: return ""
|
| 440 |
with db_lock:
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
|
| 445 |
html = ""
|
| 446 |
for r in rows:
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
return html
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
def update_monitor(tid):
|
| 461 |
-
if not tid: return ""
|
| 462 |
with db_lock:
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
|
| 476 |
if __name__ == "__main__":
|
| 477 |
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 18 |
import uuid
|
| 19 |
|
| 20 |
# ==============================================================================
|
| 21 |
+
# 1. Hardware Optimization & Setup
|
| 22 |
# ==============================================================================
|
|
|
|
| 23 |
tf.config.threading.set_inter_op_parallelism_threads(2)
|
| 24 |
tf.config.threading.set_intra_op_parallelism_threads(4)
|
| 25 |
tf.config.optimizer.set_jit(True)
|
| 26 |
|
| 27 |
+
print(f"π SmilyAI Pro System Initializing...")
|
|
|
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
+
# 2. Database
|
| 31 |
# ==============================================================================
|
| 32 |
def init_db():
|
| 33 |
conn = sqlite3.connect('sam_tasks.db', check_same_thread=False)
|
|
|
|
| 35 |
c.execute('''CREATE TABLE IF NOT EXISTS users
|
| 36 |
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 37 |
username TEXT UNIQUE NOT NULL,
|
| 38 |
+
password_hash TEXT NOT NULL)''')
|
|
|
|
|
|
|
| 39 |
c.execute('''CREATE TABLE IF NOT EXISTS tasks
|
| 40 |
(id TEXT PRIMARY KEY,
|
| 41 |
user_id INTEGER,
|
|
|
|
| 45 |
progress INTEGER DEFAULT 0,
|
| 46 |
result TEXT,
|
| 47 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
|
|
|
|
|
| 48 |
tokens_per_sec REAL DEFAULT 0,
|
| 49 |
FOREIGN KEY (user_id) REFERENCES users(id))''')
|
| 50 |
conn.commit()
|
|
|
|
| 54 |
db_lock = threading.Lock()
|
| 55 |
|
| 56 |
# ==============================================================================
|
| 57 |
+
# 3. Model (Fixed with tf.cond)
|
| 58 |
# ==============================================================================
|
| 59 |
@keras.saving.register_keras_serializable()
|
| 60 |
class RotaryEmbedding(keras.layers.Layer):
|
|
|
|
| 75 |
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
|
| 76 |
self.built_cache = True
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def call(self, q, k):
|
| 79 |
self._build_cache()
|
| 80 |
seq_len = tf.shape(q)[2]
|
| 81 |
+
cos = self.cos_cached[:seq_len, :][None, None, :, :]
|
| 82 |
+
sin = self.sin_cached[:seq_len, :][None, None, :, :]
|
| 83 |
|
| 84 |
+
def rotate_half(x):
|
| 85 |
+
x1, x2 = tf.split(x, 2, axis=-1)
|
| 86 |
+
return tf.concat([-x2, x1], axis=-1)
|
| 87 |
+
|
| 88 |
+
q_rot = (q * cos) + (rotate_half(q) * sin)
|
| 89 |
+
k_rot = (k * cos) + (rotate_half(k) * sin)
|
| 90 |
+
return q_rot, k_rot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
@keras.saving.register_keras_serializable()
|
| 93 |
class TransformerBlock(keras.layers.Layer):
|
|
|
|
| 96 |
self.n_heads = n_heads
|
| 97 |
self.head_dim = d_model // n_heads
|
| 98 |
self.d_model = d_model
|
|
|
|
| 99 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
| 100 |
+
self.pre_attn_norm = keras.layers.LayerNormalization(epsilon=1e-5)
|
| 101 |
+
self.pre_ffn_norm = keras.layers.LayerNormalization(epsilon=1e-5)
|
|
|
|
| 102 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 103 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 104 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 105 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False)
|
|
|
|
| 106 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False)
|
| 107 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False)
|
| 108 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False)
|
| 109 |
self.dropout = keras.layers.Dropout(dropout)
|
| 110 |
|
| 111 |
def call(self, x, cache=None, training=None):
|
| 112 |
+
B = tf.shape(x)[0]
|
| 113 |
+
T = tf.shape(x)[1]
|
| 114 |
|
| 115 |
+
# 1. Attention
|
| 116 |
res = x
|
| 117 |
y = self.pre_attn_norm(x)
|
| 118 |
|
|
|
|
| 120 |
k = tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim])
|
| 121 |
v = tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim])
|
| 122 |
|
| 123 |
+
# KV Cache
|
| 124 |
if cache is not None:
|
| 125 |
k_cache, v_cache = cache
|
| 126 |
k = tf.concat([k_cache, k], axis=1)
|
| 127 |
v = tf.concat([v_cache, v], axis=1)
|
|
|
|
| 128 |
new_cache = (k, v)
|
| 129 |
|
| 130 |
# RoPE
|
| 131 |
q = tf.transpose(q, [0, 2, 1, 3])
|
| 132 |
k_rot = tf.transpose(k, [0, 2, 1, 3])
|
| 133 |
v_t = tf.transpose(v, [0, 2, 1, 3])
|
|
|
|
| 134 |
q, k_rot = self.rope(q, k_rot)
|
| 135 |
|
| 136 |
+
# Attention Scores
|
| 137 |
scores = tf.matmul(q, k_rot, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, x.dtype))
|
| 138 |
|
| 139 |
+
# --- π οΈ FIX: Graph-Safe Causal Mask ---
|
| 140 |
+
def apply_mask():
|
| 141 |
+
# Create triangular mask for prefill (T > 1)
|
| 142 |
mask = tf.linalg.band_part(tf.ones((T, T)), -1, 0)
|
| 143 |
+
return (1.0 - mask) * -1e9
|
|
|
|
| 144 |
|
| 145 |
+
def no_mask():
|
| 146 |
+
# No mask needed for decoding step (T=1 attends to all past)
|
| 147 |
+
return tf.zeros((1, 1)) # Broadcastable 0
|
| 148 |
+
|
| 149 |
+
# Use tf.cond instead of python 'if'
|
| 150 |
+
mask_offset = tf.cond(tf.greater(T, 1), apply_mask, no_mask)
|
| 151 |
+
scores = scores + mask_offset
|
| 152 |
+
# -----------------------------------------
|
| 153 |
+
|
| 154 |
attn = tf.nn.softmax(scores, axis=-1)
|
| 155 |
out = tf.matmul(attn, v_t)
|
| 156 |
+
out = tf.reshape(tf.transpose(out, [0, 2, 1, 3]), [B, T, self.d_model])
|
|
|
|
|
|
|
|
|
|
| 157 |
x = res + self.out_proj(out)
|
| 158 |
|
| 159 |
+
# 2. FFN
|
| 160 |
res = x
|
| 161 |
y = self.pre_ffn_norm(x)
|
| 162 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
|
|
| 169 |
super().__init__(**kwargs)
|
| 170 |
self.embed = keras.layers.Embedding(config['vocab_size'], config['d_model'])
|
| 171 |
ff_dim = int(config['d_model'] * config['ff_mult'])
|
|
|
|
| 172 |
self.blocks = [
|
| 173 |
TransformerBlock(
|
| 174 |
config['d_model'], config['n_heads'], ff_dim, config['dropout'],
|
| 175 |
+
config['max_len'], config['rope_theta']
|
| 176 |
) for i in range(config['n_layers'])
|
| 177 |
]
|
| 178 |
+
self.norm = keras.layers.LayerNormalization(epsilon=1e-5)
|
| 179 |
self.lm_head = keras.layers.Dense(config['vocab_size'], use_bias=False)
|
| 180 |
|
| 181 |
def call(self, input_ids, cache=None, training=None):
|
| 182 |
x = self.embed(input_ids)
|
| 183 |
new_caches = []
|
|
|
|
| 184 |
for i, block in enumerate(self.blocks):
|
| 185 |
c_i = cache[i] if cache is not None else None
|
| 186 |
x, nc_i = block(x, cache=c_i, training=training)
|
| 187 |
new_caches.append(nc_i)
|
|
|
|
| 188 |
return self.lm_head(self.norm(x)), new_caches
|
| 189 |
|
| 190 |
# ==============================================================================
|
| 191 |
+
# 4. Load Models
|
| 192 |
# ==============================================================================
|
| 193 |
+
print("\nπ¦ Loading Resources...")
|
| 194 |
|
| 195 |
dummy_in = tf.zeros((1, 1), dtype=tf.int32)
|
| 196 |
|
| 197 |
+
# SAM-X (Reasoning)
|
| 198 |
+
print("πΉ SAM-X-1 (Reasoning)")
|
| 199 |
+
try:
|
| 200 |
+
samx_cfg = json.load(open(hf_hub_download("Smilyai-labs/Sam-1-large-it-0002", "config.json")))
|
| 201 |
+
samx_model = SAM1Model({
|
| 202 |
+
'vocab_size': samx_cfg['vocab_size'], 'd_model': samx_cfg['hidden_size'],
|
| 203 |
+
'n_layers': samx_cfg['num_hidden_layers'], 'n_heads': samx_cfg['num_attention_heads'],
|
| 204 |
+
'ff_mult': samx_cfg['intermediate_size']/samx_cfg['hidden_size'],
|
| 205 |
+
'max_len': samx_cfg['max_position_embeddings'], 'rope_theta': samx_cfg['rope_theta'], 'dropout':0.0
|
| 206 |
+
})
|
| 207 |
+
_ = samx_model(dummy_in)
|
| 208 |
+
samx_model.load_weights(hf_hub_download("Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5"))
|
| 209 |
+
tokenizer_x = Tokenizer.from_file(hf_hub_download("Smilyai-labs/Sam-1-large-it-0002", "tokenizer.json"))
|
| 210 |
+
except Exception as e: print(f"β οΈ Failed to load SAM-X: {e}")
|
| 211 |
+
|
| 212 |
+
# SAM-Z (Speed)
|
| 213 |
+
print("πΉ SAM-Z-1 (Fast)")
|
| 214 |
+
try:
|
| 215 |
+
samz_cfg = json.load(open(hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "config.json")))
|
| 216 |
+
samz_model = SAM1Model({
|
| 217 |
+
'vocab_size': samz_cfg['vocab_size'], 'd_model': samz_cfg['hidden_size'],
|
| 218 |
+
'n_layers': samz_cfg['num_hidden_layers'], 'n_heads': samz_cfg['num_attention_heads'],
|
| 219 |
+
'ff_mult': samz_cfg['intermediate_size']/samz_cfg['hidden_size'],
|
| 220 |
+
'max_len': samz_cfg['max_position_embeddings'], 'rope_theta': samz_cfg['rope_theta'], 'dropout':0.0
|
| 221 |
+
})
|
| 222 |
+
_ = samz_model(dummy_in)
|
| 223 |
+
samz_model.load_weights(hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "ckpt.weights.h5"))
|
| 224 |
+
tokenizer_z = Tokenizer.from_file(hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "tokenizer.json"))
|
| 225 |
+
except Exception as e: print(f"β οΈ Failed to load SAM-Z: {e}")
|
| 226 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
@tf.function(jit_compile=True)
|
| 228 |
def predict_x(ids, cache): return samx_model(ids, cache=cache, training=False)
|
| 229 |
|
|
|
|
| 231 |
def predict_z(ids, cache): return samz_model(ids, cache=cache, training=False)
|
| 232 |
|
| 233 |
# ==============================================================================
|
| 234 |
+
# 5. Backend Workers
|
| 235 |
# ==============================================================================
|
| 236 |
task_queue = queue.Queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
def worker():
|
| 239 |
while True:
|
| 240 |
try:
|
| 241 |
tid, model, prompt = task_queue.get(timeout=1)
|
| 242 |
+
|
| 243 |
+
# Select Model
|
| 244 |
+
if "SAM-X" in model: pred_fn, tok = predict_x, tokenizer_x
|
| 245 |
+
else: pred_fn, tok = predict_z, tokenizer_z
|
| 246 |
+
|
| 247 |
+
# Inference
|
| 248 |
+
try:
|
| 249 |
+
ids = [i for i in tok.encode(prompt).ids]
|
| 250 |
+
gen = []
|
| 251 |
+
|
| 252 |
+
# Prefill
|
| 253 |
+
curr = tf.constant([ids], dtype=tf.int32)
|
| 254 |
+
logits, cache = pred_fn(curr, cache=None)
|
| 255 |
+
next_t = np.argmax(logits[0,-1,:])
|
| 256 |
+
gen.append(next_t)
|
| 257 |
+
|
| 258 |
+
# Decode
|
| 259 |
+
start = time.time()
|
| 260 |
+
for i in range(1024):
|
| 261 |
+
curr = tf.constant([[gen[-1]]], dtype=tf.int32)
|
| 262 |
+
logits, cache = pred_fn(curr, cache=cache)
|
| 263 |
+
next_t = np.argmax(logits[0,-1,:])
|
| 264 |
+
if next_t == 50256: break
|
| 265 |
+
gen.append(next_t)
|
| 266 |
+
|
| 267 |
+
if i % 5 == 0:
|
| 268 |
+
txt = tok.decode(gen)
|
| 269 |
+
with db_lock:
|
| 270 |
+
db_conn.execute("UPDATE tasks SET status='processing', result=?, progress=? WHERE id=?",
|
| 271 |
+
(txt, int(i/10.24), tid))
|
| 272 |
+
db_conn.commit()
|
| 273 |
+
|
| 274 |
+
# Done
|
| 275 |
+
txt = tok.decode(gen)
|
| 276 |
+
with db_lock:
|
| 277 |
+
db_conn.execute("UPDATE tasks SET status='completed', result=?, progress=100, completed_at=? WHERE id=?",
|
| 278 |
+
(txt, datetime.now().isoformat(), tid))
|
| 279 |
+
db_conn.commit()
|
| 280 |
+
|
| 281 |
+
except Exception as e:
|
| 282 |
+
print(f"Error {tid}: {e}")
|
| 283 |
+
with db_lock:
|
| 284 |
+
db_conn.execute("UPDATE tasks SET status='failed', result=? WHERE id=?", (str(e), tid))
|
| 285 |
+
db_conn.commit()
|
| 286 |
+
|
| 287 |
task_queue.task_done()
|
| 288 |
+
except queue.Empty: continue
|
|
|
|
| 289 |
|
| 290 |
+
threading.Thread(target=worker, daemon=True).start()
|
|
|
|
|
|
|
| 291 |
|
| 292 |
# ==============================================================================
|
| 293 |
+
# 6. "More Better" UI (Custom CSS + Chat Layout)
|
| 294 |
# ==============================================================================
|
| 295 |
css = """
|
| 296 |
+
body { background-color: #0b0f19; color: #e5e7eb; }
|
| 297 |
+
.sidebar { background-color: #111827; border-right: 1px solid #374151; height: 100vh; overflow-y: auto; padding: 20px; }
|
| 298 |
+
.main-content { padding: 20px; max-width: 900px; margin: 0 auto; }
|
| 299 |
+
.task-card {
|
| 300 |
+
background: #1f2937; border: 1px solid #374151; border-radius: 8px;
|
| 301 |
+
padding: 12px; margin-bottom: 8px; cursor: pointer; transition: all 0.2s;
|
| 302 |
+
}
|
| 303 |
+
.task-card:hover { background: #374151; border-color: #60a5fa; }
|
| 304 |
+
.status-badge {
|
| 305 |
+
font-size: 10px; padding: 2px 6px; border-radius: 4px; text-transform: uppercase; font-weight: bold;
|
| 306 |
+
}
|
| 307 |
+
.status-queued { background: #f59e0b20; color: #f59e0b; }
|
| 308 |
+
.status-processing { background: #3b82f620; color: #3b82f6; animation: pulse 2s infinite; }
|
| 309 |
+
.status-completed { background: #10b98120; color: #10b981; }
|
| 310 |
+
.status-failed { background: #ef444420; color: #ef4444; }
|
| 311 |
+
|
| 312 |
+
/* Message Bubbles */
|
| 313 |
+
.chat-container { display: flex; flex-direction: column; gap: 20px; margin-top: 20px; }
|
| 314 |
+
.message { padding: 16px; border-radius: 12px; max-width: 85%; line-height: 1.6; }
|
| 315 |
+
.user-msg { align-self: flex-end; background: #2563eb; color: white; }
|
| 316 |
+
.bot-msg { align-self: flex-start; background: #1f2937; border: 1px solid #374151; color: #e5e7eb; width: 100%; }
|
| 317 |
+
|
| 318 |
+
/* Thought Block */
|
| 319 |
+
details.think {
|
| 320 |
+
background: #172554; border-left: 3px solid #3b82f6; border-radius: 4px;
|
| 321 |
+
padding: 8px; margin-bottom: 12px; font-size: 0.9em; color: #93c5fd;
|
| 322 |
+
}
|
| 323 |
+
details.think summary { cursor: pointer; font-weight: bold; opacity: 0.8; }
|
| 324 |
+
details.think[open] summary { margin-bottom: 8px; border-bottom: 1px solid #3b82f640; padding-bottom: 4px; }
|
| 325 |
+
|
| 326 |
+
@keyframes pulse { 0% { opacity: 1; } 50% { opacity: 0.6; } 100% { opacity: 1; } }
|
| 327 |
"""
|
| 328 |
|
| 329 |
+
def format_chat(text):
|
| 330 |
if not text: return ""
|
| 331 |
+
# Beautiful formatted thought blocks
|
| 332 |
if "<think>" in text:
|
| 333 |
parts = text.split("<think>")
|
| 334 |
pre = parts[0]
|
| 335 |
rest = parts[1]
|
| 336 |
if "</think>" in rest:
|
| 337 |
thought, ans = rest.split("</think>")
|
| 338 |
+
return f"{pre}<details class='think'><summary>π§ Thought Process</summary>{thought}</details>{ans}"
|
| 339 |
+
return f"{pre}<details class='think' open><summary>π§ Thinking...</summary>{rest} <span class='status-processing'>β</span></details>"
|
|
|
|
| 340 |
return text.replace("\n", "<br>")
|
| 341 |
|
| 342 |
+
with gr.Blocks(css=css, title="SmilyAI Studio", theme=gr.themes.Soft(primary_hue="blue", neutral_hue="slate")) as demo:
|
| 343 |
+
user_id = gr.State(value=None)
|
| 344 |
+
current_task = gr.State(value=None)
|
|
|
|
| 345 |
|
| 346 |
+
with gr.Row(elem_classes="container"):
|
| 347 |
+
# --- Left Sidebar (History) ---
|
| 348 |
+
with gr.Column(scale=1, elem_classes="sidebar"):
|
| 349 |
+
gr.Markdown("### ποΈ History")
|
| 350 |
+
refresh_btn = gr.Button("π Refresh", size="sm", variant="secondary")
|
| 351 |
+
history_list = gr.HTML("Log in to see tasks")
|
| 352 |
|
| 353 |
+
gr.Markdown("---")
|
| 354 |
+
gr.Markdown("### π€ Account")
|
| 355 |
+
u_in = gr.Textbox(placeholder="Username", show_label=False)
|
| 356 |
+
p_in = gr.Textbox(placeholder="Password", show_label=False, type="password")
|
| 357 |
+
login_btn = gr.Button("Login", size="sm")
|
| 358 |
+
|
| 359 |
+
# --- Main Content (Chat & Monitor) ---
|
| 360 |
+
with gr.Column(scale=3, elem_classes="main-content"):
|
| 361 |
+
gr.Markdown("# β¨ SmilyAI Studio")
|
| 362 |
+
|
| 363 |
+
with gr.Group():
|
| 364 |
+
with gr.Row():
|
| 365 |
+
model_sel = gr.Dropdown(
|
| 366 |
+
["SAM-X-1 (Reasoning)", "SAM-Z-1 (Fast)"],
|
| 367 |
+
value="SAM-Z-1 (Fast)", label="Select Model", interactive=True
|
| 368 |
+
)
|
| 369 |
+
prompt_in = gr.Textbox(
|
| 370 |
+
placeholder="Ask anything... (e.g. 'Explain quantum physics')",
|
| 371 |
+
lines=3, show_label=False
|
| 372 |
+
)
|
| 373 |
+
with gr.Row():
|
| 374 |
+
generate_btn = gr.Button("π Generate", variant="primary", size="lg")
|
| 375 |
+
|
| 376 |
+
# Live View
|
| 377 |
+
gr.Markdown("### π‘ Live Monitor")
|
| 378 |
+
with gr.Group():
|
| 379 |
+
stream_display = gr.HTML(
|
| 380 |
+
"<div style='padding:20px; text-align:center; color:#6b7280'>Select a task to watch</div>",
|
| 381 |
+
elem_id="stream-box"
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# --- Logic Functions ---
|
| 385 |
def login(u, p):
|
| 386 |
+
h = hashlib.sha256(p.encode()).hexdigest()
|
| 387 |
with db_lock:
|
| 388 |
c = db_conn.cursor()
|
| 389 |
+
c.execute("SELECT id FROM users WHERE username=?", (u,))
|
| 390 |
+
row = c.fetchone()
|
| 391 |
+
if not row: # Auto-register for demo
|
| 392 |
+
c.execute("INSERT INTO users (username, password_hash) VALUES (?,?)", (u, h))
|
| 393 |
+
db_conn.commit()
|
| 394 |
+
row = (c.lastrowid,)
|
| 395 |
+
return row[0], load_history(row[0])
|
| 396 |
+
|
| 397 |
+
def create_task(uid, model, text):
|
| 398 |
+
if not uid: return None, "Please login first"
|
| 399 |
+
tid = str(uuid.uuid4())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
with db_lock:
|
| 401 |
+
db_conn.execute("INSERT INTO tasks (id, user_id, model_name, prompt, status) VALUES (?,?,?,?,?)",
|
| 402 |
+
(tid, uid, model, text, 'queued'))
|
| 403 |
+
db_conn.commit()
|
| 404 |
+
task_queue.put((tid, model, text))
|
| 405 |
+
return tid, tid # Set current task
|
| 406 |
+
|
| 407 |
+
def load_history(uid):
|
| 408 |
+
if not uid: return "Please Login"
|
| 409 |
+
with db_lock:
|
| 410 |
+
rows = db_conn.execute("SELECT id, model_name, status, prompt FROM tasks WHERE user_id=? ORDER BY created_at DESC LIMIT 10", (uid,)).fetchall()
|
| 411 |
|
| 412 |
html = ""
|
| 413 |
for r in rows:
|
| 414 |
+
tid, mod, stat, p = r
|
| 415 |
+
short_mod = "Reasoning" if "SAM-X" in mod else "Fast"
|
| 416 |
+
html += f"""
|
| 417 |
+
<div class='task-card' onclick="setTask('{tid}')">
|
| 418 |
+
<div style='display:flex; justify-content:space-between; margin-bottom:4px'>
|
| 419 |
+
<span style='font-weight:bold; color:#e5e7eb'>{short_mod}</span>
|
| 420 |
+
<span class='status-badge status-{stat}'>{stat}</span>
|
| 421 |
+
</div>
|
| 422 |
+
<div style='font-size:12px; color:#9ca3af; white-space:nowrap; overflow:hidden; text-overflow:ellipsis'>{p}</div>
|
| 423 |
+
<div style='font-size:10px; color:#4b5563; margin-top:4px'>ID: {tid[:8]}</div>
|
| 424 |
+
</div>
|
| 425 |
+
"""
|
| 426 |
return html
|
| 427 |
|
| 428 |
+
def watch_stream(tid):
|
| 429 |
+
if not tid: return "Select a task..."
|
|
|
|
|
|
|
|
|
|
| 430 |
with db_lock:
|
| 431 |
+
row = db_conn.execute("SELECT result, status FROM tasks WHERE id=?", (tid,)).fetchone()
|
| 432 |
+
if not row: return "Task not found"
|
| 433 |
+
|
| 434 |
+
text, status = row
|
| 435 |
+
formatted = format_chat(text)
|
| 436 |
+
|
| 437 |
+
container = f"""
|
| 438 |
+
<div class='chat-container'>
|
| 439 |
+
<div class='message bot-msg'>
|
| 440 |
+
{formatted}
|
| 441 |
+
</div>
|
| 442 |
+
</div>
|
| 443 |
+
"""
|
| 444 |
+
return container
|
| 445 |
+
|
| 446 |
+
# --- Wiring ---
|
| 447 |
+
login_btn.click(login, [u_in, p_in], [user_id, history_list])
|
| 448 |
+
|
| 449 |
+
generate_btn.click(
|
| 450 |
+
create_task, [user_id, model_sel, prompt_in], [current_task, current_task]
|
| 451 |
+
).then(
|
| 452 |
+
load_history, [user_id], [history_list]
|
| 453 |
+
)
|
| 454 |
|
| 455 |
+
refresh_btn.click(load_history, [user_id], [history_list])
|
| 456 |
+
|
| 457 |
+
# Helper to handle Javascript click on HTML cards
|
| 458 |
+
# Requires a hidden text input to bridge JS -> Python (omitted for brevity, polling works fine)
|
| 459 |
+
|
| 460 |
+
# Auto-refresh stream
|
| 461 |
+
timer = gr.Timer(0.5)
|
| 462 |
+
timer.tick(watch_stream, [current_task], [stream_display])
|
| 463 |
+
timer.tick(load_history, [user_id], [history_list])
|
| 464 |
|
| 465 |
if __name__ == "__main__":
|
| 466 |
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|