Keeby-smilyai commited on
Commit
8e2d20f
·
verified ·
1 Parent(s): ac2a3fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -33,38 +33,33 @@ class RotaryEmbedding(keras.layers.Layer):
33
  self.dim = dim
34
  self.max_len = max_len
35
  self.theta = theta
 
36
 
37
  def build(self, input_shape):
38
- # FIXED: Compute in numpy first to avoid symbolic tensor issues
39
- inv_freq = 1.0 / (self.theta ** (np.arange(0, self.dim, 2, dtype=np.float32) / self.dim))
40
- t = np.arange(self.max_len, dtype=np.float32)
41
- freqs = np.outer(t, inv_freq)
42
- emb = np.concatenate([freqs, freqs], axis=-1)
43
-
44
- # Create as non-trainable weights instead of tf.constant
45
- self.cos_cached = self.add_weight(
46
- name="cos_cached",
47
- shape=(self.max_len, self.dim),
48
- initializer=keras.initializers.Constant(np.cos(emb)),
49
- trainable=False,
50
- dtype=tf.float32
51
- )
52
-
53
- self.sin_cached = self.add_weight(
54
- name="sin_cached",
55
- shape=(self.max_len, self.dim),
56
- initializer=keras.initializers.Constant(np.sin(emb)),
57
- trainable=False,
58
- dtype=tf.float32
59
- )
60
-
61
  super().build(input_shape)
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def rotate_half(self, x):
64
  x1, x2 = tf.split(x, 2, axis=-1)
65
  return tf.concat([-x2, x1], axis=-1)
66
 
67
  def call(self, q, k):
 
 
 
68
  seq_len = tf.shape(q)[2]
69
  dtype = q.dtype
70
  cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
 
33
  self.dim = dim
34
  self.max_len = max_len
35
  self.theta = theta
36
+ self.built_cache = False
37
 
38
  def build(self, input_shape):
39
+ # Use the ORIGINAL training code - compute cache on first call, not in build
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  super().build(input_shape)
41
 
42
+ def _build_cache(self):
43
+ """Build RoPE cache on first forward pass"""
44
+ if not self.built_cache:
45
+ inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
46
+ t = tf.range(self.max_len, dtype=tf.float32)
47
+ freqs = tf.einsum("i,j->ij", t, inv_freq)
48
+ emb = tf.concat([freqs, freqs], axis=-1)
49
+
50
+ # Store as numpy arrays to avoid graph issues
51
+ self.cos_cached = tf.constant(np.cos(emb.numpy()), dtype=tf.float32)
52
+ self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
53
+ self.built_cache = True
54
+
55
  def rotate_half(self, x):
56
  x1, x2 = tf.split(x, 2, axis=-1)
57
  return tf.concat([-x2, x1], axis=-1)
58
 
59
  def call(self, q, k):
60
+ # Build cache on first call (avoids build-time issues)
61
+ self._build_cache()
62
+
63
  seq_len = tf.shape(q)[2]
64
  dtype = q.dtype
65
  cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]