import os # ============================================================================ # CPU Optimization - MUST be before TensorFlow import # ============================================================================ NUM_CORES = os.cpu_count() or 4 os.environ['TF_NUM_INTEROP_THREADS'] = str(NUM_CORES) os.environ['TF_NUM_INTRAOP_THREADS'] = str(NUM_CORES) os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Force CPU only os.environ['TF_ENABLE_ONEDNN_OPTS'] = '1' # Intel optimization os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Reduce TF logging import gradio as gr import tensorflow as tf import keras from huggingface_hub import hf_hub_download import json from tokenizers import Tokenizer import numpy as np import time # Configure TF threading tf.config.threading.set_inter_op_parallelism_threads(NUM_CORES) tf.config.threading.set_intra_op_parallelism_threads(NUM_CORES) # Enable XLA JIT compilation for CPU try: tf.config.optimizer.set_jit(True) print(f"āœ… CPU optimized: {NUM_CORES} threads, oneDNN enabled, XLA JIT enabled") except: print(f"āœ… CPU optimized: {NUM_CORES} threads, oneDNN enabled") # ============================================================================ # šŸŽŠ FESTIVE MODE TOGGLE šŸŽŠ # ============================================================================ FESTIVE = True # ============================================================================ # Configuration & Model Loading # ============================================================================ print("šŸš€ Loading Sam-large-2 Model...") MODEL_REPO = "Smilyai-labs/Sam-large-2" CACHE_DIR = "./model_cache" # ============================================================================ # Model Architecture - MATCHES CHECKPOINT STRUCTURE # ============================================================================ @keras.saving.register_keras_serializable() class RotaryEmbedding(keras.layers.Layer): """RoPE with cache built during layer build phase.""" def __init__(self, dim, max_len=2048, theta=10000, **kwargs): super().__init__(**kwargs) self.dim = dim self.max_len = max_len self.theta = theta def build(self, input_shape): # Pre-compute RoPE cache as numpy arrays during build inv_freq = 1.0 / (self.theta ** (np.arange(0, self.dim, 2, dtype=np.float32) / self.dim)) t = np.arange(self.max_len, dtype=np.float32) freqs = np.outer(t, inv_freq) emb = np.concatenate([freqs, freqs], axis=-1) # Store as numpy arrays - will be converted to tensors in call() self._cos_cached = np.cos(emb).astype(np.float32) self._sin_cached = np.sin(emb).astype(np.float32) super().build(input_shape) def call(self, q, k, offset=0): """Apply rotary embeddings with position offset for KV-cache.""" seq_len = tf.shape(q)[2] dtype = q.dtype # Slice the pre-computed values cos = tf.cast(self._cos_cached[offset:offset + seq_len, :], dtype)[None, None, :, :] sin = tf.cast(self._sin_cached[offset:offset + seq_len, :], dtype)[None, None, :, :] # Fused rotate_half x1_q, x2_q = tf.split(q, 2, axis=-1) x1_k, x2_k = tf.split(k, 2, axis=-1) q_embed = (q * cos) + (tf.concat([-x2_q, x1_q], axis=-1) * sin) k_embed = (k * cos) + (tf.concat([-x2_k, x1_k], axis=-1) * sin) return q_embed, k_embed def get_config(self): config = super().get_config() config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta}) return config @keras.saving.register_keras_serializable() class RMSNorm(keras.layers.Layer): def __init__(self, epsilon=1e-5, **kwargs): super().__init__(**kwargs) self.epsilon = epsilon self.scale = None def build(self, input_shape): self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones") super().build(input_shape) def call(self, x): variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True) return x * tf.math.rsqrt(variance + self.epsilon) * self.scale def get_config(self): config = super().get_config() config.update({"epsilon": self.epsilon}) return config @keras.saving.register_keras_serializable() class TransformerBlock(keras.layers.Layer): """Transformer block - MATCHES ORIGINAL CHECKPOINT STRUCTURE.""" def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs): super().__init__(**kwargs) self.d_model = d_model self.n_heads = n_heads self.ff_dim = ff_dim self.dropout_rate = dropout self.max_len = max_len self.rope_theta = rope_theta self.head_dim = d_model // n_heads self.layer_idx = layer_idx self.scale = 1.0 / np.sqrt(self.head_dim) def build(self, input_shape): # MUST use same layer names as checkpoint self.pre_attn_norm = RMSNorm(name="pre_attn_norm") self.pre_ffn_norm = RMSNorm(name="pre_ffn_norm") # Separate Q, K, V projections (matches checkpoint) self.q_proj = keras.layers.Dense(self.d_model, use_bias=False, name="q_proj") self.k_proj = keras.layers.Dense(self.d_model, use_bias=False, name="k_proj") self.v_proj = keras.layers.Dense(self.d_model, use_bias=False, name="v_proj") self.out_proj = keras.layers.Dense(self.d_model, use_bias=False, name="o_proj") self.rope = RotaryEmbedding(self.head_dim, max_len=self.max_len, theta=self.rope_theta) # Separate gate, up, down projections (matches checkpoint) self.gate_proj = keras.layers.Dense(self.ff_dim, use_bias=False, name="gate_proj") self.up_proj = keras.layers.Dense(self.ff_dim, use_bias=False, name="up_proj") self.down_proj = keras.layers.Dense(self.d_model, use_bias=False, name="down_proj") self.dropout = keras.layers.Dropout(self.dropout_rate) super().build(input_shape) def call(self, x, training=None, past_kv=None, use_cache=False): B = tf.shape(x)[0] T = tf.shape(x)[1] res = x y = self.pre_attn_norm(x) # Separate Q, K, V projections q = tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]) q = tf.transpose(q, [0, 2, 1, 3]) # [B, n_heads, T, head_dim] k = tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]) k = tf.transpose(k, [0, 2, 1, 3]) v = tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]) v = tf.transpose(v, [0, 2, 1, 3]) # Determine position offset for RoPE if past_kv is not None: past_len = tf.shape(past_kv[0])[2] else: past_len = 0 # Apply RoPE with position offset q, k = self.rope(q, k, offset=past_len) # Concatenate with past KV if past_kv is not None: k = tf.concat([past_kv[0], k], axis=2) v = tf.concat([past_kv[1], v], axis=2) new_kv = (k, v) if use_cache else None # Scaled dot-product attention full_len = tf.shape(k)[2] scores = tf.matmul(q, k, transpose_b=True) * self.scale # Causal mask q_positions = tf.range(past_len, past_len + T) k_positions = tf.range(full_len) mask = tf.cast(q_positions[:, None] < k_positions[None, :], scores.dtype) * -1e9 scores = scores + mask[None, None, :, :] attn = tf.nn.softmax(scores, axis=-1) attn_out = tf.matmul(attn, v) attn_out = tf.transpose(attn_out, [0, 2, 1, 3]) attn_out = tf.reshape(attn_out, [B, T, self.d_model]) x = res + self.dropout(self.out_proj(attn_out), training=training) # FFN with SwiGLU res = x y = self.pre_ffn_norm(x) ffn = self.down_proj(tf.nn.silu(self.gate_proj(y)) * self.up_proj(y)) output = res + self.dropout(ffn, training=training) return output, new_kv def get_config(self): config = super().get_config() config.update({ "d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim, "dropout": self.dropout_rate, "max_len": self.max_len, "rope_theta": self.rope_theta, "layer_idx": self.layer_idx }) return config @keras.saving.register_keras_serializable() class SAM1Model(keras.Model): def __init__(self, **kwargs): super().__init__() if 'config' in kwargs and isinstance(kwargs['config'], dict): self.cfg = kwargs['config'] elif 'vocab_size' in kwargs: self.cfg = kwargs else: self.cfg = kwargs.get('cfg', kwargs) self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens") ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult']) block_args = { 'd_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'], 'ff_dim': ff_dim, 'dropout': self.cfg['dropout'], 'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta'] } self.blocks = [ TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args) for i in range(self.cfg['n_layers']) ] self.norm = RMSNorm(name="final_norm") self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head") def call(self, input_ids, training=None, past_kv=None, use_cache=False): x = self.embed(input_ids) new_past_kv = [] if use_cache else None for i, block in enumerate(self.blocks): layer_past = past_kv[i] if past_kv is not None else None x, layer_kv = block(x, training=training, past_kv=layer_past, use_cache=use_cache) if use_cache: new_past_kv.append(layer_kv) logits = self.lm_head(self.norm(x)) return logits, new_past_kv def get_config(self): base_config = super().get_config() base_config['config'] = self.cfg return base_config # ============================================================================ # Optimized Sampling # ============================================================================ class FastSampler: """Vectorized sampler for faster token selection.""" def __init__(self, vocab_size): self.vocab_size = vocab_size self.rng = np.random.default_rng() def sample(self, logits, temperature, top_k, top_p, token_freq, repetition_penalty): """Optimized sampling with vectorized operations.""" logits = logits.copy() if temperature != 1.0: logits = logits / temperature # Vectorized repetition penalty if repetition_penalty != 1.0 and token_freq: freq_tokens = np.array(list(token_freq.keys()), dtype=np.int32) freq_values = np.array(list(token_freq.values()), dtype=np.float32) valid_mask = freq_tokens < len(logits) freq_tokens = freq_tokens[valid_mask] freq_values = freq_values[valid_mask] if len(freq_tokens) > 0: logits[freq_tokens] /= np.power(repetition_penalty, freq_values) # Top-K filtering with partial sort if 0 < top_k < len(logits): top_k_indices = np.argpartition(logits, -top_k)[-top_k:] top_k_logits = logits[top_k_indices] else: top_k_indices = np.arange(len(logits)) top_k_logits = logits # Stable softmax top_k_logits = top_k_logits - np.max(top_k_logits) exp_logits = np.exp(top_k_logits) top_k_probs = exp_logits / exp_logits.sum() # Top-P (nucleus) filtering if top_p < 1.0: sorted_idx = np.argsort(top_k_probs)[::-1] cumsum = np.cumsum(top_k_probs[sorted_idx]) cutoff = np.searchsorted(cumsum, top_p) + 1 nucleus_idx = sorted_idx[:cutoff] nucleus_probs = top_k_probs[nucleus_idx] nucleus_probs /= nucleus_probs.sum() sampled = self.rng.choice(len(nucleus_probs), p=nucleus_probs) return int(top_k_indices[nucleus_idx[sampled]]) else: sampled = self.rng.choice(len(top_k_probs), p=top_k_probs) return int(top_k_indices[sampled]) # --- Model and Tokenizer Loading --- config_path = hf_hub_download(MODEL_REPO, "config.json", cache_dir=CACHE_DIR) try: weights_path = hf_hub_download(MODEL_REPO, "ckpt.weights.h5", cache_dir=CACHE_DIR) print("āœ… Found checkpoint weights (ckpt.weights.h5)") use_checkpoint = True except Exception as e: print(f"āš ļø Checkpoint not found, falling back to model.keras: {e}") try: model_path = hf_hub_download(MODEL_REPO, "model.keras", cache_dir=CACHE_DIR) use_checkpoint = False except Exception as e_model: print(f"āŒ Also failed to find model.keras: {e_model}") raise RuntimeError("Could not load model weights") with open(config_path, 'r') as f: config = json.load(f) from transformers import AutoTokenizer hf_tokenizer = AutoTokenizer.from_pretrained("gpt2") custom_tokens = ["<|im_start|>", "<|im_end|>", "", "", "", ""] hf_tokenizer.add_special_tokens({"additional_special_tokens": custom_tokens}) os.makedirs("./temp_tokenizer", exist_ok=True) hf_tokenizer.save_pretrained("./temp_tokenizer") tokenizer = Tokenizer.from_file("./temp_tokenizer/tokenizer.json") print(f"āœ… Tokenizer created with vocab size: {tokenizer.get_vocab_size()}") eos_token_id = config.get('eos_token_id', 50256) print("\nšŸ”„ Loading model...") model = None if use_checkpoint: print("šŸ“¦ Building model from config and loading checkpoint weights...") model_config = { 'vocab_size': config['vocab_size'], 'd_model': config['hidden_size'], 'n_layers': config['num_hidden_layers'], 'n_heads': config['num_attention_heads'], 'ff_mult': config['intermediate_size'] / config['hidden_size'], 'max_len': config['max_position_embeddings'], 'dropout': 0.0, # Disable dropout for inference 'rope_theta': config['rope_theta'] } model = SAM1Model(config=model_config) # Build model with dummy input dummy_input = tf.zeros((1, 16), dtype=tf.int32) _ = model(dummy_input, training=False, use_cache=False) print(f"āœ… Model architecture built: {model.count_params():,} parameters") try: model.load_weights(weights_path) print("āœ… Checkpoint weights loaded successfully!") except Exception as e: print(f"āŒ Failed to load checkpoint weights: {e}") raise else: print("šŸ“¦ Loading full saved model...") try: custom_objects = { 'SAM1Model': SAM1Model, 'TransformerBlock': TransformerBlock, 'RMSNorm': RMSNorm, 'RotaryEmbedding': RotaryEmbedding } model = keras.models.load_model(model_path, compile=False, custom_objects=custom_objects) print("āœ… Model loaded successfully") except Exception as e: print(f"āŒ Failed to load model: {e}") raise if model: print(f"āœ… Model loaded: {config['num_hidden_layers']} layers, {config['vocab_size']} vocab") # Initialize fast sampler sampler = FastSampler(config['vocab_size']) # Warm up the model (without tf.function first) print("šŸ”„ Warming up model...") warmup_input = tf.constant([[1, 2, 3, 4, 5]], dtype=tf.int32) # Initial warmup to build all internal caches for _ in range(2): logits, past_kv = model(warmup_input, training=False, use_cache=True) # Warmup decode step single_token = tf.constant([[1]], dtype=tf.int32) for _ in range(2): logits, past_kv = model(single_token, training=False, past_kv=past_kv, use_cache=True) print("āœ… Model warmed up") # ============================================================================ # Inference wrapper class for clean tf.function usage # ============================================================================ class InferenceEngine: """Wrapper for compiled inference functions.""" def __init__(self, model): self.model = model self._prefill_fn = None self._decode_fn = None def prefill(self, input_ids): """Run prefill (first call builds trace).""" if self._prefill_fn is None: # First call - run eagerly to ensure all caches are built return self.model(input_ids, training=False, use_cache=True) return self._prefill_fn(input_ids) def decode(self, input_ids, past_kv): """Run single-token decode.""" return self.model(input_ids, training=False, past_kv=past_kv, use_cache=True) def compile_traces(self): """Compile tf.function traces after warmup.""" print("šŸ”„ Compiling optimized traces...") @tf.function(reduce_retracing=True) def prefill_fn(input_ids): return self.model(input_ids, training=False, use_cache=True) self._prefill_fn = prefill_fn # Trace with sample inputs sample_input = tf.constant([[1, 2, 3, 4, 5]], dtype=tf.int32) _ = self._prefill_fn(sample_input) print("āœ… Traces compiled") # Create inference engine engine = InferenceEngine(model) # Compile traces after warmup engine.compile_traces() # ============================================================================ # Optimized Inference Logic with KV-Cache # ============================================================================ stop_generation = False def generate_stream( prompt: str, max_tokens: int = 512, temperature: float = 0.8, top_k: int = 40, top_p: float = 0.9, repetition_penalty: float = 1.1 ): """Generate text with KV-cache for fast CPU inference.""" global stop_generation stop_generation = False # Tokenize prompt prompt_ids = tokenizer.encode(prompt).ids input_ids = [i for i in prompt_ids if i != eos_token_id] if len(input_ids) == 0: yield "Error: Empty prompt after tokenization" return generated_text = "" token_count = 0 token_freq = {} # Get special token IDs im_end_id = tokenizer.token_to_id("<|im_end|>") model_end_id = tokenizer.token_to_id("") stop_ids = {eos_token_id, im_end_id, model_end_id} stop_ids.discard(None) max_context = config['max_position_embeddings'] start_time = time.perf_counter() # === PREFILL PHASE === if len(input_ids) > max_context - max_tokens: input_ids = input_ids[-(max_context - max_tokens):] input_tensor = tf.constant([input_ids], dtype=tf.int32) try: logits, past_kv = engine.prefill(input_tensor) except Exception as e: yield f"Error during prefill: {e}" return # Get logits for last position next_token_logits = logits[0, -1, :].numpy() prefill_time = time.perf_counter() - start_time prefill_tps = len(input_ids) / prefill_time if prefill_time > 0 else 0 print(f"⚔ Prefill: {len(input_ids)} tokens in {prefill_time:.3f}s ({prefill_tps:.1f} tok/s)") # === GENERATION LOOP === decode_start = time.perf_counter() for step in range(max_tokens): if stop_generation: yield generated_text + "\n\n*[Generation stopped]*" return # Sample next token next_token_id = sampler.sample( next_token_logits, temperature, top_k, top_p, token_freq, repetition_penalty ) # Stop conditions if next_token_id in stop_ids: break # Update frequency tracking token_freq[next_token_id] = token_freq.get(next_token_id, 0) + 1 # Decode and yield token_text = tokenizer.decode([next_token_id]) generated_text += token_text token_count += 1 yield generated_text # === DECODE PHASE === next_input = tf.constant([[next_token_id]], dtype=tf.int32) try: logits, past_kv = engine.decode(next_input, past_kv) except Exception as e: yield generated_text + f"\n\n*[Error during generation: {e}]*" return next_token_logits = logits[0, -1, :].numpy() # Truncate cache if too long if step % 100 == 99: current_len = past_kv[0][0].shape[2] if past_kv and past_kv[0] is not None else 0 if current_len > max_context: trim_amount = current_len - max_context + 100 past_kv = [ (k[:, :, trim_amount:, :], v[:, :, trim_amount:, :]) for k, v in past_kv ] decode_time = time.perf_counter() - decode_start total_time = time.perf_counter() - start_time if token_count > 0: decode_tps = token_count / decode_time if decode_time > 0 else 0 stats = ( f"\n\n*[Generated {token_count} tokens in {total_time:.1f}s " f"(prefill: {prefill_time:.2f}s, decode: {decode_tps:.1f} tok/s)]*" ) if not stop_generation: generated_text += stats yield generated_text # ============================================================================ # Chat Interface Logic # ============================================================================ def format_chat_prompt(message: str, history: list, reasoning_enabled: bool) -> str: """Format message history and seed if enabled.""" prompt_parts = [] for user_msg, assistant_msg in history: prompt_parts.append(f"<|im_start|>user\n{user_msg}<|im_end|>") if assistant_msg: clean_msg = assistant_msg.split("\n\n*[")[0] prompt_parts.append(f"<|im_start|>assistant\n{clean_msg}<|im_end|>") prompt_parts.append(f"<|im_start|>user\n{message}<|im_end|>") prompt_parts.append("<|im_start|>assistant") if reasoning_enabled: prompt_parts.append("") return "\n".join(prompt_parts) def chat_stream( message: str, history: list, max_tokens: int, temperature: float, top_k: int, top_p: float, repetition_penalty: float, reasoning_enabled: bool ): if not message.strip(): yield history return prompt = format_chat_prompt(message, history, reasoning_enabled) partial_response = "" for generated in generate_stream( prompt, max_tokens, temperature, top_k, top_p, repetition_penalty ): partial_response = generated # Robust end-of-turn detection stop_tags = ["<|im_end|>", ""] earliest_stop = len(partial_response) should_stop = False for tag in stop_tags: if tag in partial_response: idx = partial_response.find(tag) if idx < earliest_stop: earliest_stop = idx should_stop = True display_response = partial_response if should_stop: stats_start = partial_response.find("\n\n*[") if stats_start > earliest_stop: display_response = partial_response[:earliest_stop] + partial_response[stats_start:] else: display_response = partial_response[:earliest_stop] # Post-process reasoning tags for display if reasoning_enabled: if '' in display_response and '' in display_response: start_idx = display_response.find('') end_idx = display_response.find('') if start_idx != -1 and end_idx != -1 and end_idx > start_idx: thought_content = display_response[start_idx + len(''):end_idx].strip() formatted_thought = thought_content.replace("\n", "
") details_html = ( f'
' f'🧠 Model Reasoning (Click to expand)' f'

{formatted_thought}

' f'
' ) display_response = ( display_response[:start_idx] + details_html + display_response[end_idx + len('
'):] ) elif '' in display_response and '' not in display_response: display_response = display_response.replace('', '**🧠 Thinking:** ') yield history + [[message, display_response.strip()]] def stop_gen(): global stop_generation stop_generation = True return None # ============================================================================ # Gradio UI # ============================================================================ custom_css = """ .gradio-container { max-width: 1200px !important; margin: auto !important; } .header { text-align: center; padding: 2rem; background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); color: white; border-radius: 12px; margin-bottom: 2rem; box-shadow: 0 8px 32px rgba(240, 147, 251, 0.3); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { transform: scale(1); } 50% { transform: scale(1.02); } } .header h1 { font-size: 2.8rem; margin-bottom: 0.5rem; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.2); } .header p { font-size: 1.1rem; opacity: 0.95; } .celebration { font-size: 2rem; margin: 0.5rem; animation: bounce 1s ease infinite; } @keyframes bounce { 0%, 100% { transform: translateY(0); } 50% { transform: translateY(-10px); } } .twin-badge { display: inline-block; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 0.5rem 1rem; border-radius: 20px; font-weight: bold; margin: 0.5rem; box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3); } footer { text-align: center; padding: 2rem; color: #666; border-top: 1px solid #eee; margin-top: 2rem; } #reasoning-control-group { position: relative; display: flex; align-items: center; justify-content: center; margin-right: 10px; } #reasoning-toggle-btn { font-size: 1.5rem; border-radius: 50%; width: 40px; height: 40px; padding: 0; min-width: 0 !important; line-height: 1; background-color: #ffcc00; border: 2px solid #e6b800; } #reasoning-toggle-btn.off { background-color: #e0e0e0; border: 2px solid #ccc; } .new-tag-red { display: inline-block; background-color: #f5576c; color: white; font-size: 0.7em; font-weight: bold; padding: 2px 5px; border-radius: 4px; line-height: 1; position: absolute; top: -5px; right: -5px; z-index: 10; animation: blink 1s infinite; } @keyframes blink { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .gradio-html details.reasoning-block { border: 1px solid #ddd; border-left: 5px solid #667eea; padding: 5px 10px; margin: 10px 0; border-radius: 4px; background-color: #f9f9ff; } .gradio-html details.reasoning-block summary { font-weight: bold; cursor: pointer; outline: none; color: #667eea; } .gradio-html details.reasoning-block p { margin-top: 5px; padding-left: 10px; border-left: 1px dashed #ccc; white-space: pre-wrap; } .modal-overlay { position: fixed; top: 0; left: 0; right: 0; bottom: 0; background: rgba(0, 0, 0, 0.7); display: flex; justify-content: center; align-items: center; z-index: 1000; } .modal-content { background: white; padding: 30px; border-radius: 15px; width: 90%; max-width: 900px; box-shadow: 0 10px 50px rgba(0, 0, 0, 0.5); animation: slide-in 0.5s ease-out; } @keyframes slide-in { from { transform: translateY(-50px); opacity: 0; } to { transform: translateY(0); opacity: 1; } } .modal-content h2 { color: #764ba2; border-bottom: 2px solid #eee; padding-bottom: 10px; margin-top: 0; } .comparison-box { display: flex; gap: 20px; margin-top: 20px; } .comparison-mode { flex: 1; padding: 15px; border-radius: 10px; } .mode-reasoning { border: 2px solid #667eea; background-color: #f6f7ff; } .mode-direct { border: 2px solid #fcb69f; background-color: #fffaf5; } .comparison-mode h3 { margin-top: 0; font-size: 1.3rem; } .comparison-mode pre { background-color: #eef; padding: 10px; border-radius: 5px; overflow-x: auto; } .close-btn { margin-top: 20px; padding: 10px 20px; background-color: #764ba2; color: white; border: none; border-radius: 8px; cursor: pointer; font-size: 1rem; transition: background-color 0.3s; } .close-btn:hover { background-color: #5d3a84; } .speed-indicator { background: linear-gradient(135deg, #00b894, #00cec9); color: white; padding: 5px 10px; border-radius: 10px; font-size: 0.8rem; display: inline-block; margin-left: 10px; } """ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: reasoning_enabled = gr.State(False) welcome_modal_html = gr.HTML( """ """ ) if FESTIVE: gr.HTML("""
šŸŽ‰ šŸŽŠ ✨ šŸŽˆ šŸŽ†
Sam-large-2

šŸ¤– Sam-large-2 Chat šŸ¤–

LATEST RELEASE! Our BEST Reasoning Model - Now with KV-Cache! ⚔ 5-20x Faster

Reasoning Model
šŸš€ šŸ’« šŸŽÆ ⚔ šŸ”„
""") else: gr.HTML("""

šŸ¤– Sam-large-2 Chat

Advanced Reasoning Model with KV-Cache

""") with gr.Row(): with gr.Column(scale=4): chatbot = gr.Chatbot( height=600, show_label=False, avatar_images=( None, "https://cdn-uploads.huggingface.co/production/uploads/64e3486b82fb6ae7a06c749c/KtiMi-aDUOOeN--YNT-Fu.jpeg" ), bubble_full_width=False ) with gr.Row(): with gr.Column(min_width=0, scale=0, elem_id="reasoning-control-group"): reasoning_btn = gr.Button("šŸ’”", size="sm", elem_id="reasoning-toggle-btn", elem_classes=["off"]) gr.HTML('NEW') msg = gr.Textbox( placeholder="Type your message here...", show_label=False, scale=8, container=False ) submit_btn = gr.Button("Send šŸš€" if FESTIVE else "Send", variant="primary", scale=1) stop_btn = gr.Button("ā¹ļø Stop", variant="stop", scale=1) with gr.Row(): clear_btn = gr.Button("šŸ—‘ļø Clear Chat", size="sm") retry_btn = gr.Button("šŸ”„ Retry", size="sm") with gr.Column(scale=1): gr.Markdown("### āš™ļø Generation Settings") max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=50, label="Max Tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature") top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-K") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P") repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty") gr.Markdown("---") gr.Markdown(f"""### šŸŽŠ Sam-large-2 Model Info **Type:** Chain-of-Thought Reasoning Model **Vocab:** {config['vocab_size']:,} **Layers:** {config['num_hidden_layers']} **Context:** {config['max_position_embeddings']:,} tokens **Optimization:** KV-Cache + XLA ⚔ """) gr.Examples( examples=[ "Explain quantum computing in simple terms", "Write a short poem about artificial intelligence", "What is 24 * 12? Show your reasoning.", "What are the main differences between Python and JavaScript?" ], inputs=msg ) gr.HTML(""" """) def show_modal_js(): return """ (function() { if (sessionStorage.getItem('sam2_modal_shown') !== 'true') { const modal = document.getElementById('welcome-modal'); if (modal) { modal.style.display = 'flex'; sessionStorage.setItem('sam2_modal_shown', 'true'); } } })(); """ demo.load(None, inputs=None, outputs=None, js=show_modal_js()) def toggle_reasoning(current_state): new_state = not current_state return new_state, gr.update(elem_classes="" if new_state else "off") reasoning_btn.click( fn=toggle_reasoning, inputs=[reasoning_enabled], outputs=[reasoning_enabled, reasoning_btn], preprocess=False ) common_inputs = [msg, chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled] submit_event = msg.submit( chat_stream, inputs=common_inputs, outputs=[chatbot] ).then(lambda: "", outputs=[msg]) click_event = submit_btn.click( chat_stream, inputs=common_inputs, outputs=[chatbot] ).then(lambda: "", outputs=[msg]) stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[submit_event, click_event]) clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg]) def retry_last(history, max_tok, temp, topk, topp, rep_pen, reasoning_en): if not history: return history last_user_msg = history[-1][0] for update in chat_stream(last_user_msg, history[:-1], max_tok, temp, topk, topp, rep_pen, reasoning_en): yield update retry_event = retry_btn.click( retry_last, inputs=[chatbot, max_tokens, temperature, top_k, top_p, repetition_penalty, reasoning_enabled], outputs=[chatbot] ) stop_btn.click(fn=stop_gen, inputs=None, outputs=None, cancels=[retry_event]) if __name__ == "__main__": print("\n" + "=" * 60) print("šŸš€ Starting Sam-large-2 Chat with Optimized Inference") print("=" * 60 + "\n") demo.queue(max_size=20) demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True)