Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py โ
|
| 2 |
import gradio as gr
|
| 3 |
import threading
|
| 4 |
import os
|
|
@@ -19,10 +19,14 @@ processor = None
|
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
training_status = "๐ Initializing COCONUT-VLM Autonomous Trainer..."
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def load_model_for_stage(stage):
|
| 23 |
global model, processor
|
| 24 |
ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
|
| 25 |
-
if os.path.exists(ckpt_path):
|
| 26 |
print(f"โ
Loading checkpoint: Stage {stage}")
|
| 27 |
model = LlavaForConditionalGeneration.from_pretrained(ckpt_path, torch_dtype=torch.float16).to(device)
|
| 28 |
processor = AutoProcessor.from_pretrained(ckpt_path)
|
|
@@ -36,6 +40,7 @@ def chat_with_image(image, text, chat_history):
|
|
| 36 |
load_model_for_stage(current_stage)
|
| 37 |
|
| 38 |
try:
|
|
|
|
| 39 |
conversation = [
|
| 40 |
{"role": "user", "content": f"<image>\n{text}"},
|
| 41 |
]
|
|
@@ -45,10 +50,13 @@ def chat_with_image(image, text, chat_history):
|
|
| 45 |
output = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
| 46 |
response = processor.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
return "", chat_history
|
| 50 |
except Exception as e:
|
| 51 |
-
chat_history.append(
|
|
|
|
| 52 |
return "", chat_history
|
| 53 |
|
| 54 |
# --- Autonomous Training Pipeline ---
|
|
@@ -60,18 +68,22 @@ def auto_train_pipeline():
|
|
| 60 |
training_status = f"โถ๏ธ AUTO-TRAINING STARTED: Stage {stage}"
|
| 61 |
print(training_status)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
try:
|
| 64 |
-
|
| 65 |
-
train_vlm_stage(stage, MODEL_NAME, f"{CHECKPOINT_ROOT}/stage_{stage}")
|
| 66 |
|
| 67 |
-
# Update status
|
| 68 |
training_status = f"โ
Stage {stage} completed! Loading model..."
|
| 69 |
print(training_status)
|
| 70 |
-
|
| 71 |
-
# Load newly trained model
|
| 72 |
load_model_for_stage(stage)
|
| 73 |
|
| 74 |
-
# Brief pause before next stage
|
| 75 |
if stage < 3:
|
| 76 |
training_status = f"โณ Advancing to Stage {stage + 1} in 5 seconds..."
|
| 77 |
print(training_status)
|
|
@@ -80,7 +92,7 @@ def auto_train_pipeline():
|
|
| 80 |
except Exception as e:
|
| 81 |
training_status = f"โ Stage {stage} failed: {str(e)}"
|
| 82 |
print(training_status)
|
| 83 |
-
break
|
| 84 |
|
| 85 |
training_status = "๐ COCONUT-VLM Training Complete โ All 3 Stages Finished!"
|
| 86 |
print(training_status)
|
|
@@ -98,20 +110,23 @@ with gr.Blocks(title="๐ฅฅ COCONUT-VLM Autonomous Trainer") as demo:
|
|
| 98 |
with gr.Row():
|
| 99 |
with gr.Column(scale=1):
|
| 100 |
status = gr.Textbox(label="Training Status", value="Initializing...", interactive=False)
|
| 101 |
-
gr.Markdown("๐ก _Training runs automatically
|
| 102 |
|
| 103 |
with gr.Column(scale=2):
|
| 104 |
image_input = gr.Image(type="pil", label="Upload Image")
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
msg = gr.Textbox(label="Ask a question about the image")
|
| 107 |
clear = gr.Button("Clear Chat")
|
| 108 |
|
|
|
|
| 109 |
msg.submit(chat_with_image, [image_input, msg, chatbot], [msg, chatbot])
|
| 110 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 111 |
|
| 112 |
-
#
|
| 113 |
demo.load(initialize_autonomous_trainer, inputs=None, outputs=None)
|
| 114 |
-
|
| 115 |
-
demo.load(lambda: training_status, every=3, outputs=status)
|
| 116 |
|
| 117 |
demo.queue(max_size=20).launch()
|
|
|
|
| 1 |
+
# app.py โ FIXED: Gradio 4.x compatible, no deprecation warnings, auto-trains stages
|
| 2 |
import gradio as gr
|
| 3 |
import threading
|
| 4 |
import os
|
|
|
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
training_status = "๐ Initializing COCONUT-VLM Autonomous Trainer..."
|
| 21 |
|
| 22 |
+
print(f"๐ฅ๏ธ Running on device: {device}")
|
| 23 |
+
if device == "cuda":
|
| 24 |
+
print(f"๐ฎ GPU: {torch.cuda.get_device_name(0)}")
|
| 25 |
+
|
| 26 |
def load_model_for_stage(stage):
|
| 27 |
global model, processor
|
| 28 |
ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
|
| 29 |
+
if os.path.exists(ckpt_path) and os.path.exists(os.path.join(ckpt_path, "adapter_model.safetensors")):
|
| 30 |
print(f"โ
Loading checkpoint: Stage {stage}")
|
| 31 |
model = LlavaForConditionalGeneration.from_pretrained(ckpt_path, torch_dtype=torch.float16).to(device)
|
| 32 |
processor = AutoProcessor.from_pretrained(ckpt_path)
|
|
|
|
| 40 |
load_model_for_stage(current_stage)
|
| 41 |
|
| 42 |
try:
|
| 43 |
+
# Format input for model
|
| 44 |
conversation = [
|
| 45 |
{"role": "user", "content": f"<image>\n{text}"},
|
| 46 |
]
|
|
|
|
| 50 |
output = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
| 51 |
response = processor.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 52 |
|
| 53 |
+
# Append as OpenAI-style messages (fixes deprecation warning)
|
| 54 |
+
chat_history.append({"role": "user", "content": text})
|
| 55 |
+
chat_history.append({"role": "assistant", "content": response})
|
| 56 |
return "", chat_history
|
| 57 |
except Exception as e:
|
| 58 |
+
chat_history.append({"role": "user", "content": text})
|
| 59 |
+
chat_history.append({"role": "assistant", "content": f"โ ๏ธ Error: {str(e)}"})
|
| 60 |
return "", chat_history
|
| 61 |
|
| 62 |
# --- Autonomous Training Pipeline ---
|
|
|
|
| 68 |
training_status = f"โถ๏ธ AUTO-TRAINING STARTED: Stage {stage}"
|
| 69 |
print(training_status)
|
| 70 |
|
| 71 |
+
ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
|
| 72 |
+
# Skip if already trained
|
| 73 |
+
if os.path.exists(os.path.join(ckpt_path, "adapter_model.safetensors")):
|
| 74 |
+
training_status = f"โญ๏ธ Stage {stage} already trained โ loading..."
|
| 75 |
+
print(training_status)
|
| 76 |
+
load_model_for_stage(stage)
|
| 77 |
+
time.sleep(3)
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
try:
|
| 81 |
+
train_vlm_stage(stage, MODEL_NAME, ckpt_path)
|
|
|
|
| 82 |
|
|
|
|
| 83 |
training_status = f"โ
Stage {stage} completed! Loading model..."
|
| 84 |
print(training_status)
|
|
|
|
|
|
|
| 85 |
load_model_for_stage(stage)
|
| 86 |
|
|
|
|
| 87 |
if stage < 3:
|
| 88 |
training_status = f"โณ Advancing to Stage {stage + 1} in 5 seconds..."
|
| 89 |
print(training_status)
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
training_status = f"โ Stage {stage} failed: {str(e)}"
|
| 94 |
print(training_status)
|
| 95 |
+
break
|
| 96 |
|
| 97 |
training_status = "๐ COCONUT-VLM Training Complete โ All 3 Stages Finished!"
|
| 98 |
print(training_status)
|
|
|
|
| 110 |
with gr.Row():
|
| 111 |
with gr.Column(scale=1):
|
| 112 |
status = gr.Textbox(label="Training Status", value="Initializing...", interactive=False)
|
| 113 |
+
gr.Markdown("๐ก _Training runs automatically. No buttons. No switching._")
|
| 114 |
|
| 115 |
with gr.Column(scale=2):
|
| 116 |
image_input = gr.Image(type="pil", label="Upload Image")
|
| 117 |
+
|
| 118 |
+
# โ
FIXED: Set type="messages" to avoid deprecation warning
|
| 119 |
+
chatbot = gr.Chatbot(height=400, type="messages")
|
| 120 |
+
|
| 121 |
msg = gr.Textbox(label="Ask a question about the image")
|
| 122 |
clear = gr.Button("Clear Chat")
|
| 123 |
|
| 124 |
+
# Chat logic
|
| 125 |
msg.submit(chat_with_image, [image_input, msg, chatbot], [msg, chatbot])
|
| 126 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 127 |
|
| 128 |
+
# โ
FIXED: Use Gradio 4.x compatible .load() with every=
|
| 129 |
demo.load(initialize_autonomous_trainer, inputs=None, outputs=None)
|
| 130 |
+
demo.load(lambda: training_status, inputs=None, outputs=status, every=3) # โ Now compatible
|
|
|
|
| 131 |
|
| 132 |
demo.queue(max_size=20).launch()
|