Spaces:
Sleeping
Sleeping
Update custom_vlm.py
Browse files- custom_vlm.py +27 -48
custom_vlm.py
CHANGED
|
@@ -6,10 +6,6 @@ from transformers.models.auto.configuration_auto import AutoConfig
|
|
| 6 |
from transformers.models.auto.modeling_auto import AutoModel, AutoModelForCausalLM
|
| 7 |
|
| 8 |
class VLMConfig(PretrainedConfig):
|
| 9 |
-
"""
|
| 10 |
-
Configuration class for our custom from-scratch Vision Language Model.
|
| 11 |
-
This holds the configurations for the sub-modules.
|
| 12 |
-
"""
|
| 13 |
model_type = "custom_scratch_vlm"
|
| 14 |
|
| 15 |
def __init__(
|
|
@@ -22,12 +18,10 @@ class VLMConfig(PretrainedConfig):
|
|
| 22 |
self.vision_config = AutoConfig.from_pretrained(vision_model_name)
|
| 23 |
self.language_config = AutoConfig.from_pretrained(language_model_name)
|
| 24 |
self.projection_dim = projection_dim
|
| 25 |
-
# Make language model config aware of vocab size change if tokenizer is updated
|
| 26 |
self.language_config.vocab_size = kwargs.get("vocab_size", self.language_config.vocab_size)
|
| 27 |
super().__init__(**kwargs)
|
| 28 |
|
| 29 |
class VLMProjector(nn.Module):
|
| 30 |
-
"""Simple MLP to project vision features into the language model's embedding space."""
|
| 31 |
def __init__(self, config: VLMConfig):
|
| 32 |
super().__init__()
|
| 33 |
self.linear1 = nn.Linear(config.vision_config.hidden_size, config.projection_dim)
|
|
@@ -38,23 +32,15 @@ class VLMProjector(nn.Module):
|
|
| 38 |
return self.linear2(self.gelu(self.linear1(x)))
|
| 39 |
|
| 40 |
class CustomScratchVLM(PreTrainedModel):
|
| 41 |
-
"""
|
| 42 |
-
A VLM built from randomly initialized components.
|
| 43 |
-
"""
|
| 44 |
config_class = VLMConfig
|
| 45 |
|
| 46 |
def __init__(self, config: VLMConfig):
|
| 47 |
super().__init__(config)
|
| 48 |
print("Initializing model components from scratch using their configurations...")
|
| 49 |
-
# 1. Initialize models from their CONFIGURATIONS ONLY (random weights)
|
| 50 |
self.vision_tower = AutoModel.from_config(config.vision_config)
|
| 51 |
self.language_model = AutoModelForCausalLM.from_config(config.language_config)
|
| 52 |
-
|
| 53 |
-
# 2. Initialize our custom projector
|
| 54 |
self.multi_modal_projector = VLMProjector(config)
|
| 55 |
-
|
| 56 |
-
# This will be used to find where image features should be inserted
|
| 57 |
-
self.image_token_id = -1 # Placeholder, will be set after tokenizer is prepared
|
| 58 |
|
| 59 |
def forward(
|
| 60 |
self,
|
|
@@ -64,42 +50,29 @@ class CustomScratchVLM(PreTrainedModel):
|
|
| 64 |
labels: torch.LongTensor = None,
|
| 65 |
**kwargs
|
| 66 |
):
|
| 67 |
-
# Step 1: Get image embeddings from the vision tower
|
| 68 |
image_features = self.vision_tower(pixel_values).last_hidden_state
|
| 69 |
-
|
| 70 |
-
# Step 2: Project image patch embeddings to the language model's input space
|
| 71 |
image_embeds = self.multi_modal_projector(image_features)
|
| 72 |
-
|
| 73 |
-
# Step 3: Get text embeddings
|
| 74 |
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 75 |
|
| 76 |
-
# Step 4: Find placeholder token indices and replace with image embeddings
|
| 77 |
-
batch_size = input_ids.shape[0]
|
| 78 |
-
# Find where the image token placeholder is in the input_ids
|
| 79 |
-
# It's assumed there is one image token per sequence
|
| 80 |
-
image_token_indices = torch.where(input_ids == self.image_token_id)
|
| 81 |
-
|
| 82 |
final_embeds = text_embeds.clone()
|
| 83 |
|
| 84 |
# Replace each placeholder with the corresponding full sequence of image embeddings
|
| 85 |
-
for i in range(
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# The corresponding image embeddings for this item in the batch
|
| 89 |
-
img_embed_item = image_embeds[i]
|
| 90 |
|
| 91 |
-
|
| 92 |
-
# 1. Part of text before the image
|
| 93 |
-
pre_img_embed = final_embeds[i, :start_idx]
|
| 94 |
-
# 2. Part of text after the image
|
| 95 |
-
post_img_embed = final_embeds[i, start_idx + 1:] # +1 to skip the placeholder
|
| 96 |
|
| 97 |
-
|
| 98 |
-
final_embeds[i
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
# Step 5: Pass combined embeddings to the language model
|
| 103 |
outputs = self.language_model(
|
| 104 |
inputs_embeds=final_embeds,
|
| 105 |
attention_mask=attention_mask,
|
|
@@ -108,17 +81,23 @@ class CustomScratchVLM(PreTrainedModel):
|
|
| 108 |
)
|
| 109 |
return outputs
|
| 110 |
|
| 111 |
-
def generate(self, pixel_values,
|
| 112 |
-
"""Custom generate function to handle multimodal input."""
|
| 113 |
-
# This is a simplified generate function. More robust implementations are complex.
|
| 114 |
self.eval()
|
| 115 |
with torch.no_grad():
|
| 116 |
image_features = self.vision_tower(pixel_values).last_hidden_state
|
| 117 |
image_embeds = self.multi_modal_projector(image_features)
|
| 118 |
-
text_embeds = self.language_model.get_input_embeddings()(
|
| 119 |
-
|
| 120 |
-
# Combine embeddings (simple concatenation for generation)
|
| 121 |
inputs_embeds = torch.cat([image_embeds, text_embeds], dim=1)
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
return output_ids
|
|
|
|
| 6 |
from transformers.models.auto.modeling_auto import AutoModel, AutoModelForCausalLM
|
| 7 |
|
| 8 |
class VLMConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model_type = "custom_scratch_vlm"
|
| 10 |
|
| 11 |
def __init__(
|
|
|
|
| 18 |
self.vision_config = AutoConfig.from_pretrained(vision_model_name)
|
| 19 |
self.language_config = AutoConfig.from_pretrained(language_model_name)
|
| 20 |
self.projection_dim = projection_dim
|
|
|
|
| 21 |
self.language_config.vocab_size = kwargs.get("vocab_size", self.language_config.vocab_size)
|
| 22 |
super().__init__(**kwargs)
|
| 23 |
|
| 24 |
class VLMProjector(nn.Module):
|
|
|
|
| 25 |
def __init__(self, config: VLMConfig):
|
| 26 |
super().__init__()
|
| 27 |
self.linear1 = nn.Linear(config.vision_config.hidden_size, config.projection_dim)
|
|
|
|
| 32 |
return self.linear2(self.gelu(self.linear1(x)))
|
| 33 |
|
| 34 |
class CustomScratchVLM(PreTrainedModel):
|
|
|
|
|
|
|
|
|
|
| 35 |
config_class = VLMConfig
|
| 36 |
|
| 37 |
def __init__(self, config: VLMConfig):
|
| 38 |
super().__init__(config)
|
| 39 |
print("Initializing model components from scratch using their configurations...")
|
|
|
|
| 40 |
self.vision_tower = AutoModel.from_config(config.vision_config)
|
| 41 |
self.language_model = AutoModelForCausalLM.from_config(config.language_config)
|
|
|
|
|
|
|
| 42 |
self.multi_modal_projector = VLMProjector(config)
|
| 43 |
+
self.image_token_id = -1
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def forward(
|
| 46 |
self,
|
|
|
|
| 50 |
labels: torch.LongTensor = None,
|
| 51 |
**kwargs
|
| 52 |
):
|
|
|
|
| 53 |
image_features = self.vision_tower(pixel_values).last_hidden_state
|
|
|
|
|
|
|
| 54 |
image_embeds = self.multi_modal_projector(image_features)
|
|
|
|
|
|
|
| 55 |
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
final_embeds = text_embeds.clone()
|
| 58 |
|
| 59 |
# Replace each placeholder with the corresponding full sequence of image embeddings
|
| 60 |
+
for i in range(input_ids.shape[0]):
|
| 61 |
+
image_token_idx = torch.where(input_ids[i] == self.image_token_id)[0]
|
| 62 |
+
if image_token_idx.numel() == 0: continue # Skip if no image token found
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
image_token_idx = image_token_idx[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
pre_img_embed = final_embeds[i, :image_token_idx]
|
| 67 |
+
post_img_embed = final_embeds[i, image_token_idx + 1:]
|
| 68 |
+
|
| 69 |
+
# Combine parts
|
| 70 |
+
combined = torch.cat([pre_img_embed, image_embeds[i], post_img_embed], dim=0)
|
| 71 |
+
|
| 72 |
+
# Since lengths can vary, we need to ensure it fits back.
|
| 73 |
+
# The preprocessor now handles creating correctly sized masks/labels.
|
| 74 |
+
final_embeds[i] = combined
|
| 75 |
|
|
|
|
| 76 |
outputs = self.language_model(
|
| 77 |
inputs_embeds=final_embeds,
|
| 78 |
attention_mask=attention_mask,
|
|
|
|
| 81 |
)
|
| 82 |
return outputs
|
| 83 |
|
| 84 |
+
def generate(self, pixel_values, input_ids, attention_mask, **kwargs):
|
| 85 |
+
"""Custom generate function to handle multimodal input for inference."""
|
|
|
|
| 86 |
self.eval()
|
| 87 |
with torch.no_grad():
|
| 88 |
image_features = self.vision_tower(pixel_values).last_hidden_state
|
| 89 |
image_embeds = self.multi_modal_projector(image_features)
|
| 90 |
+
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 91 |
+
|
|
|
|
| 92 |
inputs_embeds = torch.cat([image_embeds, text_embeds], dim=1)
|
| 93 |
|
| 94 |
+
# Create a combined attention mask for generation
|
| 95 |
+
image_attention_mask = torch.ones(image_embeds.shape[:2], dtype=torch.long, device=self.device)
|
| 96 |
+
combined_attention_mask = torch.cat([image_attention_mask, attention_mask], dim=1)
|
| 97 |
+
|
| 98 |
+
output_ids = self.language_model.generate(
|
| 99 |
+
inputs_embeds=inputs_embeds,
|
| 100 |
+
attention_mask=combined_attention_mask,
|
| 101 |
+
**kwargs
|
| 102 |
+
)
|
| 103 |
return output_ids
|