Keeby-smilyai commited on
Commit
c91df11
ยท
verified ยท
1 Parent(s): be4d66f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -57
app.py CHANGED
@@ -4,14 +4,12 @@ import os
4
  import time
5
  from train_vlm import train_vlm_stage
6
  from transformers import AutoImageProcessor, AutoTokenizer
7
- from custom_vlm import CustomScratchVLM # Import our custom model
8
  import torch
9
 
10
- # --- Config ---
11
  CHECKPOINT_ROOT = "./checkpoints"
12
  os.makedirs(CHECKPOINT_ROOT, exist_ok=True)
13
 
14
- # --- Global state for the model ---
15
  current_stage = 0
16
  model = None
17
  image_processor = None
@@ -19,17 +17,13 @@ tokenizer = None
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
 
21
  print(f"๐Ÿ–ฅ๏ธ Running on device: {device}")
22
- if device == "cuda":
23
- print(f"๐ŸŽฎ GPU: {torch.cuda.get_device_name(0)}")
24
 
25
  def load_model_for_stage(stage):
26
- """Loads the appropriate custom model and processors for a given stage."""
27
  global model, image_processor, tokenizer, current_stage
28
-
29
  current_stage = stage
30
  ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
31
 
32
- # Check for a saved model config, which indicates a trained checkpoint
33
  if os.path.exists(os.path.join(ckpt_path, "config.json")):
34
  print(f"โœ… Loading FROM-SCRATCH checkpoint: Stage {stage}")
35
  if model is not None: del model
@@ -39,103 +33,79 @@ def load_model_for_stage(stage):
39
  image_processor = AutoImageProcessor.from_pretrained(ckpt_path)
40
  tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
41
  else:
42
- # Before any training, there is no model to load.
43
  print(f"โš ๏ธ No checkpoint for Stage {stage} โ€” model is not loaded.")
44
- model = None
45
- image_processor = None
46
- tokenizer = None
47
 
48
  def chat_with_image(image, text, chat_history):
49
- """Handles the user's chat interaction with the custom VLM."""
50
- if model is None or image_processor is None or tokenizer is None:
51
- return "", chat_history + [{"role": "assistant", "content": "Model is not loaded or is currently training from scratch. Please wait."}]
52
 
53
  if image is None:
54
  return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": "Please upload an image."}]
55
 
56
  try:
57
- # Prepare inputs for our custom model
58
  pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)
59
 
60
- # Format prompt with the special image token
61
- prompt = f"USER: {tokenizer.additional_special_tokens[0]}\nQ: {text}\nASSISTANT:"
62
- prompt_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
 
 
63
 
64
- # Use our custom generate method
65
  output_ids = model.generate(
66
  pixel_values=pixel_values,
67
- prompt_ids=prompt_ids,
 
68
  max_new_tokens=256,
69
  do_sample=True,
70
- temperature=0.7
 
71
  )
72
 
73
- # Decode the generated part
74
- response = tokenizer.decode(output_ids[0][prompt_ids.shape[1]:], skip_special_tokens=True)
75
 
76
  chat_history.append({"role": "user", "content": text})
77
- chat_history.append({"role": "assistant", "content": response})
78
  return "", chat_history
79
  except Exception as e:
80
- return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": f"โš ๏ธ Error: {str(e)}"}]
81
-
82
 
83
  def run_autonomous_training_and_update_ui():
84
- """Generator function that runs the from-scratch training pipeline."""
85
- yield "๐Ÿš€ Initializing COCONUT-VLM Autonomous Trainer (FROM SCRATCH)..."
86
-
87
- training_failed = False
88
  for stage in [1, 2, 3]:
89
  ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
90
-
91
  if os.path.exists(os.path.join(ckpt_path, "config.json")):
92
  status_message = f"โญ๏ธ Stage {stage} already trained โ€” loading..."
93
  yield status_message
94
  load_model_for_stage(stage)
95
  continue
96
 
97
- status_message = f"โ–ถ๏ธ AUTO-TRAINING FROM SCRATCH STARTED: Stage {stage}"
98
  yield status_message
99
-
100
  try:
101
- # Call the training function (no longer needs model_name)
102
  train_vlm_stage(stage, ckpt_path)
103
  status_message = f"โœ… Stage {stage} completed! Loading new model..."
104
  yield status_message
105
  load_model_for_stage(stage)
106
  except Exception as e:
107
  status_message = f"โŒ Stage {stage} failed: {e}"
108
- yield status_message
109
- training_failed = True
110
- break
111
 
112
- if not training_failed:
113
- yield "๐ŸŽ‰ COCONUT-VLM Training Complete โ€” All 3 Stages Finished!"
114
- else:
115
- yield "๐Ÿ›‘ Training stopped due to an error."
116
-
117
- # --- Gradio UI (No Changes) ---
118
- with gr.Blocks(title="๐Ÿฅฅ COCONUT-VLM Autonomous Trainer") as demo:
119
- gr.Markdown("# ๐Ÿฅฅ COCONUT-VLM: Autonomous Vision-Language Trainer (From Scratch)")
120
- gr.Markdown("Model is training itself **from random initialization**. This will take a very long time and requires significant compute. You can interact with the latest trained model.")
121
- # ... rest of UI is the same ...
122
  with gr.Row():
123
  with gr.Column(scale=1):
124
- status = gr.Textbox(
125
- label="Training Status", value="Waiting to start...", interactive=False,
126
- lines=10, max_lines=20
127
- )
128
- gr.Markdown("๐Ÿ’ก _Training runs automatically on page load._")
129
-
130
  with gr.Column(scale=2):
131
  image_input = gr.Image(type="pil", label="Upload Image")
132
  chatbot = gr.Chatbot(label="Chat with the VLM", height=400)
133
- msg = gr.Textbox(label="Ask a question about the image")
134
  clear = gr.Button("Clear Chat")
135
-
136
  msg.submit(chat_with_image, [image_input, msg, chatbot], [msg, chatbot])
137
  clear.click(lambda: (None, None, []), None, [image_input, msg, chatbot])
138
-
139
  demo.load(fn=run_autonomous_training_and_update_ui, inputs=None, outputs=status)
140
 
141
  demo.queue().launch(debug=True)
 
4
  import time
5
  from train_vlm import train_vlm_stage
6
  from transformers import AutoImageProcessor, AutoTokenizer
7
+ from custom_vlm import CustomScratchVLM
8
  import torch
9
 
 
10
  CHECKPOINT_ROOT = "./checkpoints"
11
  os.makedirs(CHECKPOINT_ROOT, exist_ok=True)
12
 
 
13
  current_stage = 0
14
  model = None
15
  image_processor = None
 
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
  print(f"๐Ÿ–ฅ๏ธ Running on device: {device}")
20
+ if device == "cuda": print(f"๐ŸŽฎ GPU: {torch.cuda.get_device_name(0)}")
 
21
 
22
  def load_model_for_stage(stage):
 
23
  global model, image_processor, tokenizer, current_stage
 
24
  current_stage = stage
25
  ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
26
 
 
27
  if os.path.exists(os.path.join(ckpt_path, "config.json")):
28
  print(f"โœ… Loading FROM-SCRATCH checkpoint: Stage {stage}")
29
  if model is not None: del model
 
33
  image_processor = AutoImageProcessor.from_pretrained(ckpt_path)
34
  tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
35
  else:
 
36
  print(f"โš ๏ธ No checkpoint for Stage {stage} โ€” model is not loaded.")
37
+ model, image_processor, tokenizer = None, None, None
 
 
38
 
39
  def chat_with_image(image, text, chat_history):
40
+ if not all([model, image_processor, tokenizer]):
41
+ return "", chat_history + [{"role": "assistant", "content": "Model is not loaded or is currently training. Please wait."}]
 
42
 
43
  if image is None:
44
  return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": "Please upload an image."}]
45
 
46
  try:
 
47
  pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)
48
 
49
+ # For inference, we do not include the <IMAGE> token in the text prompt
50
+ prompt = f"USER: \nQuestion: {text}\nASSISTANT:"
51
+ inputs = tokenizer(prompt, return_tensors="pt")
52
+ input_ids = inputs.input_ids.to(device)
53
+ attention_mask = inputs.attention_mask.to(device)
54
 
 
55
  output_ids = model.generate(
56
  pixel_values=pixel_values,
57
+ input_ids=input_ids,
58
+ attention_mask=attention_mask,
59
  max_new_tokens=256,
60
  do_sample=True,
61
+ temperature=0.7,
62
+ pad_token_id=tokenizer.eos_token_id
63
  )
64
 
65
+ # Decode only the newly generated tokens
66
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
67
 
68
  chat_history.append({"role": "user", "content": text})
69
+ chat_history.append({"role": "assistant", "content": response or "[No response generated]"})
70
  return "", chat_history
71
  except Exception as e:
72
+ return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": f"โš ๏ธ Error: {e}"}]
 
73
 
74
  def run_autonomous_training_and_update_ui():
75
+ yield "๐Ÿš€ Initializing From-Scratch Trainer..."
 
 
 
76
  for stage in [1, 2, 3]:
77
  ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
 
78
  if os.path.exists(os.path.join(ckpt_path, "config.json")):
79
  status_message = f"โญ๏ธ Stage {stage} already trained โ€” loading..."
80
  yield status_message
81
  load_model_for_stage(stage)
82
  continue
83
 
84
+ status_message = f"โ–ถ๏ธ AUTO-TRAINING FROM SCRATCH: Stage {stage}"
85
  yield status_message
 
86
  try:
 
87
  train_vlm_stage(stage, ckpt_path)
88
  status_message = f"โœ… Stage {stage} completed! Loading new model..."
89
  yield status_message
90
  load_model_for_stage(stage)
91
  except Exception as e:
92
  status_message = f"โŒ Stage {stage} failed: {e}"
93
+ yield status_message; raise e # Stop execution on failure
94
+ yield "๐ŸŽ‰ COCONUT-VLM Training Complete โ€” All 3 Stages Finished!"
 
95
 
96
+ with gr.Blocks(title="๐Ÿฅฅ COCONUT-VLM From Scratch") as demo:
97
+ gr.Markdown("# ๐Ÿฅฅ COCONUT-VLM: Autonomous Trainer (From Scratch)")
98
+ gr.Markdown("Model is training itself **from random initialization**. You can interact with the latest trained model.")
 
 
 
 
 
 
 
99
  with gr.Row():
100
  with gr.Column(scale=1):
101
+ status = gr.Textbox(label="Training Status", value="Waiting to start...", interactive=False, lines=10)
 
 
 
 
 
102
  with gr.Column(scale=2):
103
  image_input = gr.Image(type="pil", label="Upload Image")
104
  chatbot = gr.Chatbot(label="Chat with the VLM", height=400)
105
+ msg = gr.Textbox(label="Ask a question")
106
  clear = gr.Button("Clear Chat")
 
107
  msg.submit(chat_with_image, [image_input, msg, chatbot], [msg, chatbot])
108
  clear.click(lambda: (None, None, []), None, [image_input, msg, chatbot])
 
109
  demo.load(fn=run_autonomous_training_and_update_ui, inputs=None, outputs=status)
110
 
111
  demo.queue().launch(debug=True)