Spaces:
Sleeping
Sleeping
| # Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import html | |
| import inspect | |
| import re | |
| import urllib.parse as ul | |
| import warnings | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import PixArtImageProcessor | |
| from diffusers.loaders import SanaLoraLoaderMixin | |
| from diffusers.models import AutoencoderDC, SanaTransformer2DModel | |
| from diffusers.schedulers import DPMSolverMultistepScheduler | |
| from diffusers.utils import ( | |
| BACKENDS_MAPPING, | |
| USE_PEFT_BACKEND, | |
| is_bs4_available, | |
| is_ftfy_available, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import get_device, is_torch_version, randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import ( | |
| ASPECT_RATIO_512_BIN, | |
| ASPECT_RATIO_1024_BIN, | |
| ) | |
| from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN | |
| from .pipeline_output import SiDPipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_bs4_available(): | |
| from bs4 import BeautifulSoup | |
| if is_ftfy_available(): | |
| import ftfy | |
| ASPECT_RATIO_4096_BIN = { | |
| "0.25": [2048.0, 8192.0], | |
| "0.26": [2048.0, 7936.0], | |
| "0.27": [2048.0, 7680.0], | |
| "0.28": [2048.0, 7424.0], | |
| "0.32": [2304.0, 7168.0], | |
| "0.33": [2304.0, 6912.0], | |
| "0.35": [2304.0, 6656.0], | |
| "0.4": [2560.0, 6400.0], | |
| "0.42": [2560.0, 6144.0], | |
| "0.48": [2816.0, 5888.0], | |
| "0.5": [2816.0, 5632.0], | |
| "0.52": [2816.0, 5376.0], | |
| "0.57": [3072.0, 5376.0], | |
| "0.6": [3072.0, 5120.0], | |
| "0.68": [3328.0, 4864.0], | |
| "0.72": [3328.0, 4608.0], | |
| "0.78": [3584.0, 4608.0], | |
| "0.82": [3584.0, 4352.0], | |
| "0.88": [3840.0, 4352.0], | |
| "0.94": [3840.0, 4096.0], | |
| "1.0": [4096.0, 4096.0], | |
| "1.07": [4096.0, 3840.0], | |
| "1.13": [4352.0, 3840.0], | |
| "1.21": [4352.0, 3584.0], | |
| "1.29": [4608.0, 3584.0], | |
| "1.38": [4608.0, 3328.0], | |
| "1.46": [4864.0, 3328.0], | |
| "1.67": [5120.0, 3072.0], | |
| "1.75": [5376.0, 3072.0], | |
| "2.0": [5632.0, 2816.0], | |
| "2.09": [5888.0, 2816.0], | |
| "2.4": [6144.0, 2560.0], | |
| "2.5": [6400.0, 2560.0], | |
| "2.89": [6656.0, 2304.0], | |
| "3.0": [6912.0, 2304.0], | |
| "3.11": [7168.0, 2304.0], | |
| "3.62": [7424.0, 2048.0], | |
| "3.75": [7680.0, 2048.0], | |
| "3.88": [7936.0, 2048.0], | |
| "4.0": [8192.0, 2048.0], | |
| } | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import SanaPipeline | |
| >>> pipe = SanaPipeline.from_pretrained( | |
| ... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> pipe.text_encoder.to(torch.bfloat16) | |
| >>> pipe.transformer = pipe.transformer.to(torch.bfloat16) | |
| >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0] | |
| >>> image[0].save("output.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class SiDSanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin): | |
| r""" | |
| Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). | |
| """ | |
| # fmt: off | |
| bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}") | |
| # fmt: on | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast], | |
| text_encoder: Gemma2PreTrainedModel, | |
| vae: AutoencoderDC, | |
| transformer: SanaTransformer2DModel, | |
| scheduler: DPMSolverMultistepScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.encoder_block_out_channels) - 1) | |
| if hasattr(self, "vae") and self.vae is not None | |
| else 32 | |
| ) | |
| self.image_processor = PixArtImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor | |
| ) | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def _get_gemma_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| clean_caption: bool = False, | |
| max_sequence_length: int = 300, | |
| complex_human_instruction: Optional[List[str]] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| clean_caption (`bool`, defaults to `False`): | |
| If `True`, the function will preprocess and clean the provided caption before encoding. | |
| max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. | |
| complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): | |
| If `complex_human_instruction` is not empty, the function will use the complex Human instruction for | |
| the prompt. | |
| """ | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if getattr(self, "tokenizer", None) is not None: | |
| self.tokenizer.padding_side = "right" | |
| prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
| # prepare complex human instruction | |
| if not complex_human_instruction: | |
| max_length_all = max_sequence_length | |
| else: | |
| chi_prompt = "\n".join(complex_human_instruction) | |
| prompt = [chi_prompt + p for p in prompt] | |
| num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) | |
| max_length_all = num_chi_prompt_tokens + max_sequence_length - 2 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length_all, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_attention_mask = text_inputs.attention_mask | |
| prompt_attention_mask = prompt_attention_mask.to(device) | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=prompt_attention_mask | |
| ) | |
| prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device) | |
| return prompt_embeds, prompt_attention_mask | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| clean_caption: bool = False, | |
| max_sequence_length: int = 300, | |
| complex_human_instruction: Optional[List[str]] = None, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
| PixArt-Alpha, this should be "". | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. | |
| clean_caption (`bool`, defaults to `False`): | |
| If `True`, the function will preprocess and clean the provided caption before encoding. | |
| max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. | |
| complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): | |
| If `complex_human_instruction` is not empty, the function will use the complex Human instruction for | |
| the prompt. | |
| """ | |
| if device is None: | |
| device = self._execution_device | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| else: | |
| dtype = None | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if getattr(self, "tokenizer", None) is not None: | |
| self.tokenizer.padding_side = "right" | |
| # See Section 3.1. of the paper. | |
| max_length = max_sequence_length | |
| select_index = [0] + list(range(-max_length + 1, 0)) | |
| if prompt_embeds is None: | |
| prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| dtype=dtype, | |
| clean_caption=clean_caption, | |
| max_sequence_length=max_sequence_length, | |
| complex_human_instruction=complex_human_instruction, | |
| ) | |
| prompt_embeds = prompt_embeds[:, select_index] | |
| prompt_attention_mask = prompt_attention_mask[:, select_index] | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = ( | |
| [negative_prompt] * batch_size | |
| if isinstance(negative_prompt, str) | |
| else negative_prompt | |
| ) | |
| negative_prompt_embeds, negative_prompt_attention_mask = ( | |
| self._get_gemma_prompt_embeds( | |
| prompt=negative_prompt, | |
| device=device, | |
| dtype=dtype, | |
| clean_caption=clean_caption, | |
| max_sequence_length=max_sequence_length, | |
| complex_human_instruction=False, | |
| ) | |
| ) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| dtype=dtype, device=device | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat( | |
| 1, num_images_per_prompt, 1 | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.view( | |
| bs_embed, -1 | |
| ) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( | |
| num_images_per_prompt, 1 | |
| ) | |
| else: | |
| negative_prompt_embeds = None | |
| negative_prompt_attention_mask = None | |
| if self.text_encoder is not None: | |
| if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| return ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| callback_on_step_end_tensor_inputs=None, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| ): | |
| if height % 32 != 0 or width % 32 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 32 but are {height} and {width}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs | |
| for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and ( | |
| not isinstance(prompt, str) and not isinstance(prompt, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError( | |
| "Must provide `prompt_attention_mask` when specifying `prompt_embeds`." | |
| ) | |
| if ( | |
| negative_prompt_embeds is not None | |
| and negative_prompt_attention_mask is None | |
| ): | |
| raise ValueError( | |
| "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
| f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
| f" {negative_prompt_attention_mask.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
| def _text_preprocessing(self, text, clean_caption=False): | |
| if clean_caption and not is_bs4_available(): | |
| logger.warning( | |
| BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") | |
| ) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if clean_caption and not is_ftfy_available(): | |
| logger.warning( | |
| BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") | |
| ) | |
| logger.warning("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if not isinstance(text, (tuple, list)): | |
| text = [text] | |
| def process(text: str): | |
| if clean_caption: | |
| text = self._clean_caption(text) | |
| text = self._clean_caption(text) | |
| else: | |
| text = text.lower().strip() | |
| return text | |
| return [process(t) for t in text] | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
| def _clean_caption(self, caption): | |
| caption = str(caption) | |
| caption = ul.unquote_plus(caption) | |
| caption = caption.strip().lower() | |
| caption = re.sub("<person>", "person", caption) | |
| # urls: | |
| caption = re.sub( | |
| r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| caption = re.sub( | |
| r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| # html: | |
| caption = BeautifulSoup(caption, features="html.parser").text | |
| # @<nickname> | |
| caption = re.sub(r"@[\w\d]+\b", "", caption) | |
| # 31C0—31EF CJK Strokes | |
| # 31F0—31FF Katakana Phonetic Extensions | |
| # 3200—32FF Enclosed CJK Letters and Months | |
| # 3300—33FF CJK Compatibility | |
| # 3400—4DBF CJK Unified Ideographs Extension A | |
| # 4DC0—4DFF Yijing Hexagram Symbols | |
| # 4E00—9FFF CJK Unified Ideographs | |
| caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
| caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
| caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
| caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
| caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
| caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
| caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
| ####################################################### | |
| # все виды тире / all types of dash --> "-" | |
| caption = re.sub( | |
| r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
| "-", | |
| caption, | |
| ) | |
| # кавычки к одному стандарту | |
| caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
| caption = re.sub(r"[‘’]", "'", caption) | |
| # " | |
| caption = re.sub(r""?", "", caption) | |
| # & | |
| caption = re.sub(r"&", "", caption) | |
| # ip addresses: | |
| caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
| # article ids: | |
| caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
| # \n | |
| caption = re.sub(r"\\n", " ", caption) | |
| # "#123" | |
| caption = re.sub(r"#\d{1,3}\b", "", caption) | |
| # "#12345.." | |
| caption = re.sub(r"#\d{5,}\b", "", caption) | |
| # "123456.." | |
| caption = re.sub(r"\b\d{6,}\b", "", caption) | |
| # filenames: | |
| caption = re.sub( | |
| r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption | |
| ) | |
| # | |
| caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
| caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
| caption = re.sub( | |
| self.bad_punct_regex, r" ", caption | |
| ) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
| caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
| # this-is-my-cute-cat / this_is_my_cute_cat | |
| regex2 = re.compile(r"(?:\-|\_)") | |
| if len(re.findall(regex2, caption)) > 3: | |
| caption = re.sub(regex2, " ", caption) | |
| caption = ftfy.fix_text(caption) | |
| caption = html.unescape(html.unescape(caption)) | |
| caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
| caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
| caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
| caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
| caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
| caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
| caption = re.sub( | |
| r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption | |
| ) | |
| caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
| caption = re.sub( | |
| r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption | |
| ) # j2d1a2a... | |
| caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
| caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
| caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
| caption = re.sub(r"\s+", " ", caption) | |
| caption.strip() | |
| caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
| caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
| caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
| caption = re.sub(r"^\.\S+$", "", caption) | |
| return caption.strip() | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1.0 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| guidance_scale: float = 1.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 256, | |
| noise_type: str = "fresh", # 'fresh', 'ddim', 'fixed' | |
| time_scale: float = 1000.0, | |
| use_resolution_binning: bool = True, | |
| ): | |
| if use_resolution_binning: | |
| if self.transformer.config.sample_size == 128: | |
| aspect_ratio_bin = ASPECT_RATIO_4096_BIN | |
| elif self.transformer.config.sample_size == 64: | |
| aspect_ratio_bin = ASPECT_RATIO_2048_BIN | |
| elif self.transformer.config.sample_size == 32: | |
| aspect_ratio_bin = ASPECT_RATIO_1024_BIN | |
| elif self.transformer.config.sample_size == 16: | |
| aspect_ratio_bin = ASPECT_RATIO_512_BIN | |
| else: | |
| raise ValueError("Invalid sample size") | |
| orig_height, orig_width = height, width | |
| height, width = self.image_processor.classify_height_width_bin( | |
| height, width, ratios=aspect_ratio_bin | |
| ) | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| _, | |
| _, | |
| ) = self.encode_prompt( | |
| prompt, | |
| prompt_embeds=prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| # 3. Prepare latents | |
| num_channels_latents = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 4. SiD sampling loop | |
| # Initialize D_x | |
| D_x = torch.zeros_like(latents).to(latents.device) | |
| # Use fixed noise for now (can be extended as needed) | |
| initial_latents = latents.clone() | |
| for i in range(num_inference_steps): | |
| if noise_type == "fresh": | |
| noise = ( | |
| latents if i == 0 else torch.randn_like(latents).to(latents.device) | |
| ) | |
| elif noise_type == "ddim": | |
| noise = ( | |
| latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach() | |
| ) | |
| elif noise_type == "fixed": | |
| noise = initial_latents # Use the initial, unmodified latents | |
| else: | |
| raise ValueError(f"Unknown noise_type: {noise_type}") | |
| # Compute t value, normalized to [0, 1] | |
| init_timesteps = 999 | |
| scalar_t = float(init_timesteps) * ( | |
| 1.0 - float(i) / float(num_inference_steps) | |
| ) | |
| t_val = scalar_t / 999.0 | |
| t = torch.full( | |
| (latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype | |
| ) | |
| t_flattern = t.flatten() | |
| if t.numel() > 1: | |
| t = t.view(-1, 1, 1, 1) | |
| latents = (1.0 - t) * D_x + t * noise | |
| latent_model_input = latents | |
| flow_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_attention_mask=prompt_attention_mask, | |
| timestep=time_scale * t_flattern, | |
| return_dict=False, | |
| )[0] | |
| D_x = latents - ( | |
| t * flow_pred | |
| if torch.numel(t) == 1 | |
| else t.view(-1, 1, 1, 1) * flow_pred | |
| ) | |
| # 5. Decode latent to image | |
| image = self.vae.decode( | |
| (D_x / self.vae.config.scaling_factor), | |
| return_dict=False, | |
| )[0] | |
| if use_resolution_binning: | |
| image = self.image_processor.resize_and_crop_tensor( | |
| image, orig_height, orig_width | |
| ) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return SiDPipelineOutput(images=image) | |