Spaces:
Sleeping
Sleeping
| # Copyright 2025 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import torch | |
| from transformers import ( | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| SiglipImageProcessor, | |
| SiglipVisionModel, | |
| T5EncoderModel, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin | |
| from diffusers.models.autoencoders import AutoencoderKL | |
| from diffusers.models.transformers import SD3Transformer2DModel | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from .pipeline_output import SiDPipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class SiDSD3Pipeline( | |
| DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin | |
| ): | |
| r""" | |
| Args: | |
| transformer ([`SD3Transformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModelWithProjection`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, | |
| with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` | |
| as its dimension. | |
| text_encoder_2 ([`CLIPTextModelWithProjection`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| text_encoder_3 ([`T5EncoderModel`]): | |
| Frozen text-encoder. Stable Diffusion 3 uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_3 (`T5TokenizerFast`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| image_encoder (`SiglipVisionModel`, *optional*): | |
| Pre-trained Vision Model for IP Adapter. | |
| feature_extractor (`SiglipImageProcessor`, *optional*): | |
| Image processor for IP Adapter. | |
| """ | |
| model_cpu_offload_seq = ( | |
| "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae" | |
| ) | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "pooled_prompt_embeds"] | |
| def __init__( | |
| self, | |
| transformer: SD3Transformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer_2: CLIPTokenizer, | |
| text_encoder_3: T5EncoderModel, | |
| tokenizer_3: T5TokenizerFast, | |
| image_encoder: SiglipVisionModel = None, | |
| feature_extractor: SiglipImageProcessor = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| text_encoder_3=text_encoder_3, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| tokenizer_3=tokenizer_3, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| if getattr(self, "vae", None) | |
| else 8 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length | |
| if hasattr(self, "tokenizer") and self.tokenizer is not None | |
| else 77 | |
| ) | |
| self.default_sample_size = ( | |
| self.transformer.config.sample_size | |
| if hasattr(self, "transformer") and self.transformer is not None | |
| else 128 | |
| ) | |
| self.patch_size = ( | |
| self.transformer.config.patch_size | |
| if hasattr(self, "transformer") and self.transformer is not None | |
| else 2 | |
| ) | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 256, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if self.text_encoder_3 is None: | |
| return torch.zeros( | |
| ( | |
| batch_size * num_images_per_prompt, | |
| self.tokenizer_max_length, | |
| self.transformer.config.joint_attention_dim, | |
| ), | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| text_inputs = self.tokenizer_3( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_3( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer_3.batch_decode( | |
| untruncated_ids[:, self.tokenizer_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] | |
| dtype = self.text_encoder_3.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| return prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| clip_skip: Optional[int] = None, | |
| clip_model_index: int = 0, | |
| ): | |
| device = device or self._execution_device | |
| clip_tokenizers = [self.tokenizer, self.tokenizer_2] | |
| clip_text_encoders = [self.text_encoder, self.text_encoder_2] | |
| tokenizer = clip_tokenizers[clip_model_index] | |
| text_encoder = clip_text_encoders[clip_model_index] | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), output_hidden_states=True | |
| ) | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| if clip_skip is None: | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| else: | |
| prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view( | |
| batch_size * num_images_per_prompt, -1 | |
| ) | |
| return prompt_embeds, pooled_prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| prompt_3: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| clip_skip: Optional[int] = None, | |
| max_sequence_length: int = 256, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| prompt_3 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| negative_prompt_3 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and | |
| `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| prompt_3 = prompt_3 or prompt | |
| prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 | |
| prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=clip_skip, | |
| clip_model_index=0, | |
| ) | |
| prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( | |
| prompt=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=clip_skip, | |
| clip_model_index=1, | |
| ) | |
| clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) | |
| t5_prompt_embed = self._get_t5_prompt_embeds( | |
| prompt=prompt_3, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| clip_prompt_embeds = torch.nn.functional.pad( | |
| clip_prompt_embeds, | |
| (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]), | |
| ) | |
| prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) | |
| pooled_prompt_embeds = torch.cat( | |
| [pooled_prompt_embed, pooled_prompt_2_embed], dim=-1 | |
| ) | |
| return ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| ) | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| prompt_3, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| negative_prompt_3=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if ( | |
| height % (self.vae_scale_factor * self.patch_size) != 0 | |
| or width % (self.vae_scale_factor * self.patch_size) != 0 | |
| ): | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}." | |
| f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs | |
| for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_3 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and ( | |
| not isinstance(prompt, str) and not isinstance(prompt, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| elif prompt_2 is not None and ( | |
| not isinstance(prompt_2, str) and not isinstance(prompt_2, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" | |
| ) | |
| elif prompt_3 is not None and ( | |
| not isinstance(prompt_3, str) and not isinstance(prompt_3, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}" | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_3 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError( | |
| f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}" | |
| ) | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def skip_guidance_layers(self): | |
| return self._skip_guidance_layers | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image | |
| def enable_sequential_cpu_offload(self, *args, **kwargs): | |
| if ( | |
| self.image_encoder is not None | |
| and "image_encoder" not in self._exclude_from_cpu_offload | |
| ): | |
| logger.warning( | |
| "`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses " | |
| "`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling " | |
| "`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`." | |
| ) | |
| super().enable_sequential_cpu_offload(*args, **kwargs) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| prompt_3: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| guidance_scale: float = 1.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 256, | |
| use_sd3_shift: bool = False, | |
| noise_type: str = "fresh", # 'fresh', 'ddim', 'fixed' | |
| time_scale: float = 1000.0, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| prompt_3, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt, | |
| prompt_2, | |
| prompt_3, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| # 3. Prepare latents | |
| num_channels_latents = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 4. SiD sampling loop | |
| # Initialize D_x | |
| D_x = torch.zeros_like(latents).to(latents.device) | |
| # Use fixed noise for now (can be extended as needed) | |
| initial_latents = latents.clone() if noise_type == 'fixed' else None | |
| for i in range(num_inference_steps): | |
| if noise_type == "fresh": | |
| noise = ( | |
| latents if i == 0 else torch.randn_like(latents).to(latents.device) | |
| ) | |
| elif noise_type == "ddim": | |
| noise = ( | |
| latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach() | |
| ) | |
| elif noise_type == "fixed": | |
| noise = initial_latents # Use the initial, unmodified latents | |
| else: | |
| raise ValueError(f"Unknown noise_type: {noise_type}") | |
| # Compute t value, normalized to [0, 1] | |
| init_timesteps = 999 | |
| scalar_t = float(init_timesteps) * ( | |
| 1.0 - float(i) / float(num_inference_steps) | |
| ) | |
| t_val = scalar_t / 999.0 | |
| # t_val = 1.0 - float(i) / float(num_inference_steps) | |
| if use_sd3_shift: | |
| shift = 3.0 | |
| t_val = shift * t_val / (1 + (shift - 1) * t_val) | |
| t = torch.full( | |
| (latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype | |
| ) | |
| t_flattern = t.flatten() | |
| if t.numel() > 1: | |
| t = t.view(-1, 1, 1, 1) | |
| latents = (1.0 - t) * D_x + t * noise | |
| latent_model_input = latents | |
| flow_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| # encoder_attention_mask=prompt_attention_mask, | |
| pooled_projections=pooled_prompt_embeds, | |
| timestep=time_scale * t_flattern, | |
| return_dict=False, | |
| )[0] | |
| D_x = latents - ( | |
| t * flow_pred | |
| if torch.numel(t) == 1 | |
| else t.view(-1, 1, 1, 1) * flow_pred | |
| ) | |
| # 5. Decode latent to image | |
| image = self.vae.decode( | |
| (D_x / self.vae.config.scaling_factor) + self.vae.config.shift_factor, | |
| return_dict=False, | |
| )[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| self.maybe_free_model_hooks() | |
| # 6. Return output | |
| if not return_dict: | |
| return (image,) | |
| return SiDPipelineOutput(images=image) | |