Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import gradio as gr | |
| MODEL_ID = "Sourabh2/qwen-fashion-assistant-merged" | |
| print("π Loading model:", MODEL_ID) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.float16, | |
| device_map="auto" | |
| ) | |
| model.eval() | |
| print(f"β Model loaded on: {model.device}") | |
| SYSTEM_PROMPT = ( | |
| "You are a professional fashion shop consultant. " | |
| "Provide helpful, friendly, and knowledgeable advice about fashion, clothing, styling, and shopping." | |
| ) | |
| def generate_response(message, history): | |
| """Chat function for Gradio interface""" | |
| messages = [{"role": "system", "content": SYSTEM_PROMPT}] | |
| # Add previous chat | |
| for human, ai in history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": ai}) | |
| # Add current user message | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize input | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| attention_mask = torch.ones_like(inputs) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| input_ids=inputs, | |
| attention_mask=attention_mask, | |
| max_new_tokens=512, | |
| temperature=0.6, | |
| top_p=0.85, | |
| repetition_penalty=1.1, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id, | |
| use_cache=True | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Try to clean extra tokens if model outputs full conversation | |
| if "assistant" in response: | |
| response = response.split("assistant")[-1].strip() | |
| return response | |
| # --- Gradio UI --- | |
| css = """ | |
| #chatbot { | |
| height: 550px !important; | |
| } | |
| footer { | |
| display: none !important; | |
| } | |
| """ | |
| examples = [ | |
| ["What color shirt goes well with navy blue pants?"], | |
| ["I have a job interview tomorrow. What should I wear?"], | |
| ["How do I style a black leather jacket?"], | |
| ["What are the fashion trends for summer 2025?"], | |
| ["Can I wear brown shoes with a grey suit?"], | |
| ["What's a good outfit for a casual date?"], | |
| ] | |
| with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
| gr.Markdown( | |
| """ | |
| # π AI Fashion Assistant | |
| Welcome to your personal style consultant powered by **Qwen2.5-3B** | |
| Ask me anything about fashion, styling, or outfits! | |
| """ | |
| ) | |
| chatbot = gr.Chatbot(label="Chat with your fashion consultant", height=500) | |
| msg = gr.Textbox( | |
| placeholder="Type your question about fashion or style...", | |
| label="Your Message" | |
| ) | |
| clear = gr.Button("Clear Chat") | |
| def user_chat(user_message, history): | |
| response = generate_response(user_message, history) | |
| history.append((user_message, response)) | |
| return history, "" | |
| msg.submit(user_chat, [msg, chatbot], [chatbot, msg]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| gr.Examples(examples, inputs=msg) | |
| demo.launch() | |