Spaces:
Sleeping
Sleeping
Shunfeng Zheng
commited on
Update 1_SpatialParse.py
Browse files- 1_SpatialParse.py +7 -88
1_SpatialParse.py
CHANGED
|
@@ -6,7 +6,6 @@ from PIL import Image
|
|
| 6 |
import base64
|
| 7 |
import sys
|
| 8 |
import pandas as pd
|
| 9 |
-
# import en_core_web_md
|
| 10 |
from spacy.tokens import Span, Doc, Token
|
| 11 |
from utils import geoutil
|
| 12 |
import urllib.parse
|
|
@@ -156,17 +155,6 @@ def set_input():
|
|
| 156 |
text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
|
| 157 |
if(st.button("Extract")):
|
| 158 |
|
| 159 |
-
# return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
|
| 160 |
-
|
| 161 |
-
return 'Between Glebe and Pyrmont. Burwood.'
|
| 162 |
-
return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
|
| 163 |
-
return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
|
| 164 |
-
# return 'Between Burwood and Pyrmont.'
|
| 165 |
-
# return 'Between Burwood and Glebe.'
|
| 166 |
-
# return 'Between Burwood and Darling Harbour.'
|
| 167 |
-
# return 'Between China and USA.'
|
| 168 |
-
# return 'The Burwood city.'
|
| 169 |
-
# text = "New York is north of Washington. Between Burwood and Pyrmont city."
|
| 170 |
return text
|
| 171 |
|
| 172 |
def set_selected_entities(doc):
|
|
@@ -177,61 +165,7 @@ def set_selected_entities(doc):
|
|
| 177 |
return doc
|
| 178 |
|
| 179 |
def extract_spatial_entities(text):
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
# # nlp = spacy.load("en_core_web_md")
|
| 183 |
-
# # nlp.add_pipe("spatial_pipeline", after="ner")
|
| 184 |
-
# # doc = nlp(text)
|
| 185 |
-
# # doc = set_selected_entities(doc)
|
| 186 |
-
# # html = displacy.render(doc, style="ent", options=options)
|
| 187 |
-
# # html = html.replace("\n", "")
|
| 188 |
-
# # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
|
| 189 |
-
# # show_spatial_ent_table(doc, text)
|
| 190 |
-
|
| 191 |
-
# nlp = spacy.load("en_core_web_md") #####
|
| 192 |
-
# nlp.add_pipe("spatial_pipeline", after="ner")
|
| 193 |
-
# doc = nlp(text)
|
| 194 |
-
|
| 195 |
-
# # 分句处理
|
| 196 |
-
# sent_ents = []
|
| 197 |
-
# sent_texts = []
|
| 198 |
-
# sent_rse_id = []
|
| 199 |
-
# offset = 0 # 记录当前 token 偏移量
|
| 200 |
-
# sent_start_positions = [0] # 记录句子信息
|
| 201 |
-
# doc_copy = doc.copy() # 用于展示方程组合
|
| 202 |
-
# for sent in doc.sents:
|
| 203 |
-
|
| 204 |
-
# sent_doc = nlp(sent.text) # 逐句处理
|
| 205 |
-
# sent_doc = set_selected_entities(sent_doc) # 这里处理实体
|
| 206 |
-
# sent_texts.append(sent_doc.text)
|
| 207 |
-
|
| 208 |
-
# for ent in sent_doc.ents:
|
| 209 |
-
# sent_rse_id.append(ent._.rse_id)
|
| 210 |
-
# # **调整每个实体的索引,使其匹配完整文本**
|
| 211 |
-
# for ent in sent_doc.ents:
|
| 212 |
-
# new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
|
| 213 |
-
# sent_ents.append(new_ent)
|
| 214 |
-
|
| 215 |
-
# offset += len(sent) # 更新偏移量
|
| 216 |
-
# sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点
|
| 217 |
-
# # **创建新 Doc**
|
| 218 |
-
# final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
|
| 219 |
-
# for i in sent_start_positions: # 手动标记句子起始点
|
| 220 |
-
# if i < len(final_doc):
|
| 221 |
-
# final_doc[i].is_sent_start = True
|
| 222 |
-
# # **设置实体**
|
| 223 |
-
# final_doc.set_ents(sent_ents)
|
| 224 |
-
|
| 225 |
-
# for i in range(len(sent_rse_id)):
|
| 226 |
-
# final_doc.ents[i]._.rse_id = sent_rse_id[i]
|
| 227 |
-
# print(doc.ents[0].sent, '原始')
|
| 228 |
-
# doc = final_doc
|
| 229 |
-
# print(doc.ents[0].sent, '新')
|
| 230 |
-
# # 分句处理完毕
|
| 231 |
-
|
| 232 |
-
# # doc = set_selected_entities(doc)
|
| 233 |
-
# # doc.to_disk("saved_doc.spacy")
|
| 234 |
-
# doc.to_disk("/tmp/saved_doc.spacy")
|
| 235 |
|
| 236 |
Span.set_extension("rse_id", default="", force=True)
|
| 237 |
api_result = call_backend(text)
|
|
@@ -240,11 +174,6 @@ def extract_spatial_entities(text):
|
|
| 240 |
st.markdown(type(api_result))
|
| 241 |
st.markdown(doc_element)
|
| 242 |
|
| 243 |
-
# doc_element = {'text': 'Between Burwood and Glebe.', 'ents': [{'start': 8, 'end': 15, 'label': 'GPE'}, {'start': 20, 'end': 25, 'label': 'GPE'}], 'tokens': [{'id': 0, 'start': 0, 'end': 7}, {'id': 1, 'start': 8, 'end': 15}, {'id': 2, 'start': 16, 'end': 19}, {'id': 3, 'start': 20, 'end': 25}, {'id': 4, 'start': 25, 'end': 26}], 'ents_ext': [{'start': 8, 'end': 15, 'label': 'GPE', 'rse_id': 'Burwood'}, {'start': 20, 'end': 25, 'label': 'GPE', 'rse_id': 'Glebe'}]}
|
| 244 |
-
# doc_element = {'text': 'I would like to know where is the area between Burwood and Glebe. Pyrmont.', 'ents': [{'start': 47, 'end': 54, 'label': 'GPE'}, {'start': 59, 'end': 64, 'label': 'GPE'}, {'start': 66, 'end': 73, 'label': 'GPE'}], 'sents': [{'start': 0, 'end': 65}, {'start': 66, 'end': 74}], 'tokens': [{'id': 0, 'start': 0, 'end': 1}, {'id': 1, 'start': 2, 'end': 7}, {'id': 2, 'start': 8, 'end': 12}, {'id': 3, 'start': 13, 'end': 15}, {'id': 4, 'start': 16, 'end': 20}, {'id': 5, 'start': 21, 'end': 26}, {'id': 6, 'start': 27, 'end': 29}, {'id': 7, 'start': 30, 'end': 33}, {'id': 8, 'start': 34, 'end': 38}, {'id': 9, 'start': 39, 'end': 46}, {'id': 10, 'start': 47, 'end': 54}, {'id': 11, 'start': 55, 'end': 58}, {'id': 12, 'start': 59, 'end': 64}, {'id': 13, 'start': 64, 'end': 65}, {'id': 14, 'start': 66, 'end': 73}, {'id': 15, 'start': 73, 'end': 74}]}
|
| 245 |
-
# doc_element =
|
| 246 |
-
|
| 247 |
-
|
| 248 |
|
| 249 |
nlp = English()
|
| 250 |
nlp.add_pipe("sentencizer")
|
|
@@ -276,14 +205,14 @@ def show_sentence_selector_table(doc_copy):
|
|
| 276 |
st.markdown("**______________________________________________________________________________________**")
|
| 277 |
st.markdown("**Sentence Selector for Geographic Composition**")
|
| 278 |
|
| 279 |
-
|
| 280 |
sentences = list(doc_copy.sents)
|
| 281 |
|
| 282 |
-
|
| 283 |
rows = []
|
| 284 |
for idx, sent in enumerate(sentences):
|
| 285 |
sentence_text = sent.text.strip()
|
| 286 |
-
|
| 287 |
url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
|
| 288 |
new_row = {
|
| 289 |
'Sr.': idx + 1,
|
|
@@ -292,7 +221,6 @@ def show_sentence_selector_table(doc_copy):
|
|
| 292 |
}
|
| 293 |
rows.append(new_row)
|
| 294 |
|
| 295 |
-
# 转为 DataFrame 并渲染为 HTML
|
| 296 |
df = pd.DataFrame(rows)
|
| 297 |
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 298 |
|
|
@@ -304,9 +232,8 @@ def show_spatial_ent_table(doc, text):
|
|
| 304 |
st.markdown("**______________________________________________________________________________________**")
|
| 305 |
st.markdown("**Spatial Entities List**")
|
| 306 |
|
| 307 |
-
# 初始化一个空 DataFrame
|
| 308 |
df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
|
| 309 |
-
rows = []
|
| 310 |
|
| 311 |
for ent in doc.ents:
|
| 312 |
url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
|
@@ -314,7 +241,6 @@ def show_spatial_ent_table(doc, text):
|
|
| 314 |
print(ent._.rse_id, 'pppp')
|
| 315 |
url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 316 |
|
| 317 |
-
# 创建新行
|
| 318 |
new_row = {
|
| 319 |
'Sr.': len(rows) + 1,
|
| 320 |
'entity': ent.text,
|
|
@@ -323,19 +249,12 @@ def show_spatial_ent_table(doc, text):
|
|
| 323 |
'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
|
| 324 |
}
|
| 325 |
|
| 326 |
-
rows.append(new_row)
|
| 327 |
|
| 328 |
-
# 将所有行转为 DataFrame
|
| 329 |
df = pd.DataFrame(rows)
|
| 330 |
|
| 331 |
-
# 使用 Streamlit 显示 HTML 表格
|
| 332 |
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 333 |
|
| 334 |
-
# params = st.experimental_get_query_params()
|
| 335 |
-
# params = st.query_params
|
| 336 |
-
# ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
|
| 337 |
-
# print(geoutil.get_ent(params), 'ppppp')
|
| 338 |
-
|
| 339 |
def set_header(): # tetis Geospacy LOGO
|
| 340 |
LOGO_IMAGE = "title.jpg"
|
| 341 |
|
|
@@ -442,7 +361,7 @@ def set_side_menu():
|
|
| 442 |
|
| 443 |
def main():
|
| 444 |
global gpe_selected, loc_selected, rse_selected, model
|
| 445 |
-
|
| 446 |
set_header()
|
| 447 |
set_side_menu()
|
| 448 |
|
|
|
|
| 6 |
import base64
|
| 7 |
import sys
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
from spacy.tokens import Span, Doc, Token
|
| 10 |
from utils import geoutil
|
| 11 |
import urllib.parse
|
|
|
|
| 155 |
text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
|
| 156 |
if(st.button("Extract")):
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
return text
|
| 159 |
|
| 160 |
def set_selected_entities(doc):
|
|
|
|
| 165 |
return doc
|
| 166 |
|
| 167 |
def extract_spatial_entities(text):
|
| 168 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
Span.set_extension("rse_id", default="", force=True)
|
| 171 |
api_result = call_backend(text)
|
|
|
|
| 174 |
st.markdown(type(api_result))
|
| 175 |
st.markdown(doc_element)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
nlp = English()
|
| 179 |
nlp.add_pipe("sentencizer")
|
|
|
|
| 205 |
st.markdown("**______________________________________________________________________________________**")
|
| 206 |
st.markdown("**Sentence Selector for Geographic Composition**")
|
| 207 |
|
| 208 |
+
|
| 209 |
sentences = list(doc_copy.sents)
|
| 210 |
|
| 211 |
+
|
| 212 |
rows = []
|
| 213 |
for idx, sent in enumerate(sentences):
|
| 214 |
sentence_text = sent.text.strip()
|
| 215 |
+
|
| 216 |
url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
|
| 217 |
new_row = {
|
| 218 |
'Sr.': idx + 1,
|
|
|
|
| 221 |
}
|
| 222 |
rows.append(new_row)
|
| 223 |
|
|
|
|
| 224 |
df = pd.DataFrame(rows)
|
| 225 |
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 226 |
|
|
|
|
| 232 |
st.markdown("**______________________________________________________________________________________**")
|
| 233 |
st.markdown("**Spatial Entities List**")
|
| 234 |
|
|
|
|
| 235 |
df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
|
| 236 |
+
rows = []
|
| 237 |
|
| 238 |
for ent in doc.ents:
|
| 239 |
url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
|
|
|
| 241 |
print(ent._.rse_id, 'pppp')
|
| 242 |
url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
|
| 243 |
|
|
|
|
| 244 |
new_row = {
|
| 245 |
'Sr.': len(rows) + 1,
|
| 246 |
'entity': ent.text,
|
|
|
|
| 249 |
'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
|
| 250 |
}
|
| 251 |
|
| 252 |
+
rows.append(new_row)
|
| 253 |
|
|
|
|
| 254 |
df = pd.DataFrame(rows)
|
| 255 |
|
|
|
|
| 256 |
st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
def set_header(): # tetis Geospacy LOGO
|
| 259 |
LOGO_IMAGE = "title.jpg"
|
| 260 |
|
|
|
|
| 361 |
|
| 362 |
def main():
|
| 363 |
global gpe_selected, loc_selected, rse_selected, model
|
| 364 |
+
|
| 365 |
set_header()
|
| 366 |
set_side_menu()
|
| 367 |
|