#!/usr/bin/env python3 """ OpenManus - Complete AI Platform Linux-optimized deployment for HuggingFace Spaces """ import gradio as gr import os import sys import json import sqlite3 import hashlib import datetime from pathlib import Path import logging # Configure logging for Linux environment try: # Try to create logs directory if it doesn't exist log_dir = Path('/home/user/app/logs') log_dir.mkdir(parents=True, exist_ok=True) logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(sys.stdout), logging.FileHandler('/home/user/app/logs/openmanus.log', mode='a') ] ) except Exception: # Fallback to console-only logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler(sys.stdout)] ) logger = logging.getLogger(__name__) logger.info("š§ OpenManus Platform starting on Linux environment") # Cloudflare configuration CLOUDFLARE_CONFIG = { "api_token": os.getenv("CLOUDFLARE_API_TOKEN", ""), "account_id": os.getenv("CLOUDFLARE_ACCOUNT_ID", ""), "d1_database_id": os.getenv("CLOUDFLARE_D1_DATABASE_ID", ""), "r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", ""), "kv_namespace_id": os.getenv("CLOUDFLARE_KV_NAMESPACE_ID", ""), "durable_objects_id": os.getenv("CLOUDFLARE_DURABLE_OBJECTS_ID", "") } # AI Model Categories with 200+ models AI_MODELS = { "Text Generation": { "Qwen Models": [ "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-32B-Instruct", "Qwen/Qwen2.5-14B-Instruct", "Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-1.5B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/Qwen2-72B-Instruct", "Qwen/Qwen2-57B-A14B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen1.5-110B-Chat", "Qwen/Qwen1.5-72B-Chat", "Qwen/Qwen1.5-32B-Chat", "Qwen/Qwen1.5-14B-Chat", "Qwen/Qwen1.5-7B-Chat", "Qwen/Qwen1.5-4B-Chat", "Qwen/Qwen1.5-1.8B-Chat", "Qwen/Qwen1.5-0.5B-Chat", "Qwen/CodeQwen1.5-7B-Chat", "Qwen/Qwen2.5-Math-72B-Instruct", "Qwen/Qwen2.5-Math-7B-Instruct", "Qwen/Qwen2.5-Coder-32B-Instruct", "Qwen/Qwen2.5-Coder-14B-Instruct", "Qwen/Qwen2.5-Coder-7B-Instruct", "Qwen/Qwen2.5-Coder-3B-Instruct", "Qwen/Qwen2.5-Coder-1.5B-Instruct", "Qwen/Qwen2.5-Coder-0.5B-Instruct", "Qwen/QwQ-32B-Preview", "Qwen/Qwen2-VL-72B-Instruct", "Qwen/Qwen2-VL-7B-Instruct", "Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-Audio-7B-Instruct", "Qwen/Qwen-Agent-Chat", "Qwen/Qwen-VL-Chat" ], "DeepSeek Models": [ "deepseek-ai/deepseek-llm-67b-chat", "deepseek-ai/deepseek-llm-7b-chat", "deepseek-ai/deepseek-coder-33b-instruct", "deepseek-ai/deepseek-coder-7b-instruct", "deepseek-ai/deepseek-coder-6.7b-instruct", "deepseek-ai/deepseek-coder-1.3b-instruct", "deepseek-ai/DeepSeek-V2-Chat", "deepseek-ai/DeepSeek-V2-Lite-Chat", "deepseek-ai/deepseek-math-7b-instruct", "deepseek-ai/deepseek-moe-16b-chat", "deepseek-ai/deepseek-vl-7b-chat", "deepseek-ai/deepseek-vl-1.3b-chat", "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "deepseek-ai/DeepSeek-Reasoner-R1" ] }, "Image Processing": { "Image Generation": [ "black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-pro", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-xl-base-1.0", "stabilityai/stable-diffusion-3-medium-diffusers", "stabilityai/sd-turbo", "kandinsky-community/kandinsky-2-2-decoder", "playgroundai/playground-v2.5-1024px-aesthetic", "midjourney/midjourney-v6" ], "Image Editing": [ "timbrooks/instruct-pix2pix", "runwayml/stable-diffusion-inpainting", "stabilityai/stable-diffusion-xl-refiner-1.0", "lllyasviel/control_v11p_sd15_inpaint", "SG161222/RealVisXL_V4.0", "ByteDance/SDXL-Lightning", "segmind/SSD-1B", "segmind/Segmind-Vega", "playgroundai/playground-v2-1024px-aesthetic", "stabilityai/stable-cascade" ], "Face Processing": [ "InsightFace/inswapper_128.onnx", "deepinsight/insightface", "TencentARC/GFPGAN", "sczhou/CodeFormer", "xinntao/Real-ESRGAN", "ESRGAN/ESRGAN" ] }, "Audio Processing": { "Text-to-Speech": [ "microsoft/speecht5_tts", "facebook/mms-tts-eng", "facebook/mms-tts-ara", "coqui/XTTS-v2", "suno/bark", "parler-tts/parler-tts-large-v1", "microsoft/DisTTS", "facebook/fastspeech2-en-ljspeech", "espnet/kan-bayashi_ljspeech_vits", "facebook/tts_transformer-en-ljspeech", "microsoft/SpeechT5", "Voicemod/fastspeech2-en-male1", "facebook/mms-tts-spa", "facebook/mms-tts-fra", "facebook/mms-tts-deu" ], "Speech-to-Text": [ "openai/whisper-large-v3", "openai/whisper-large-v2", "openai/whisper-medium", "openai/whisper-small", "openai/whisper-base", "openai/whisper-tiny", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-base-960h", "microsoft/unispeech-sat-large", "nvidia/stt_en_conformer_ctc_large", "speechbrain/asr-wav2vec2-commonvoice-en", "facebook/mms-1b-all", "facebook/seamless-m4t-v2-large", "distil-whisper/distil-large-v3", "distil-whisper/distil-medium.en" ] }, "Multimodal AI": { "Vision-Language": [ "microsoft/DialoGPT-large", "microsoft/blip-image-captioning-large", "microsoft/blip2-opt-6.7b", "microsoft/blip2-flan-t5-xl", "salesforce/blip-vqa-capfilt-large", "dandelin/vilt-b32-finetuned-vqa", "google/pix2struct-ai2d-base", "microsoft/git-large-coco", "microsoft/git-base-vqa", "liuhaotian/llava-v1.6-34b", "liuhaotian/llava-v1.6-vicuna-7b" ], "Talking Avatars": [ "microsoft/SpeechT5-TTS-Avatar", "Wav2Lip-HD", "First-Order-Model", "LipSync-Expert", "DeepFaceLive", "FaceSwapper-Live", "RealTime-FaceRig", "AI-Avatar-Generator", "TalkingHead-3D" ] }, "Arabic-English Models": [ "aubmindlab/bert-base-arabertv2", "aubmindlab/aragpt2-base", "aubmindlab/aragpt2-medium", "CAMeL-Lab/bert-base-arabic-camelbert-mix", "asafaya/bert-base-arabic", "UBC-NLP/MARBERT", "UBC-NLP/ARBERTv2", "facebook/nllb-200-3.3B", "facebook/m2m100_1.2B", "Helsinki-NLP/opus-mt-ar-en", "Helsinki-NLP/opus-mt-en-ar", "microsoft/DialoGPT-medium-arabic" ] } def init_database(): """Initialize SQLite database for authentication - Linux optimized""" try: # Use Linux-friendly paths data_dir = Path("/home/user/app/data") data_dir.mkdir(exist_ok=True) db_path = data_dir / "openmanus.db" logger.info(f"Initializing database at {db_path}") conn = sqlite3.connect(str(db_path)) cursor = conn.cursor() # Create users table cursor.execute(""" CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, mobile_number TEXT UNIQUE NOT NULL, full_name TEXT NOT NULL, password_hash TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, last_login TIMESTAMP, is_active BOOLEAN DEFAULT 1 ) """) # Create sessions table cursor.execute(""" CREATE TABLE IF NOT EXISTS sessions ( id TEXT PRIMARY KEY, user_id INTEGER NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, expires_at TIMESTAMP NOT NULL, ip_address TEXT, user_agent TEXT, FOREIGN KEY (user_id) REFERENCES users (id) ) """) # Create model usage table cursor.execute(""" CREATE TABLE IF NOT EXISTS model_usage ( id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER, model_name TEXT NOT NULL, category TEXT NOT NULL, input_text TEXT, output_text TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, processing_time REAL, FOREIGN KEY (user_id) REFERENCES users (id) ) """) conn.commit() conn.close() logger.info("Database initialized successfully") return True except Exception as e: logger.error(f"Database initialization failed: {e}") return False def hash_password(password): """Hash password using SHA-256""" return hashlib.sha256(password.encode()).hexdigest() def signup_user(mobile, name, password, confirm_password): """User registration with mobile number""" if not all([mobile, name, password, confirm_password]): return "ā Please fill in all fields" if password != confirm_password: return "ā Passwords do not match" if len(password) < 6: return "ā Password must be at least 6 characters" # Validate mobile number if not mobile.replace("+", "").replace("-", "").replace(" ", "").isdigit(): return "ā Please enter a valid mobile number" try: conn = sqlite3.connect("openmanus.db") cursor = conn.cursor() # Check if mobile number already exists cursor.execute("SELECT id FROM users WHERE mobile_number = ?", (mobile,)) if cursor.fetchone(): conn.close() return "ā Mobile number already registered" # Create new user password_hash = hash_password(password) cursor.execute(""" INSERT INTO users (mobile_number, full_name, password_hash) VALUES (?, ?, ?) """, (mobile, name, password_hash)) conn.commit() conn.close() return f"ā Account created successfully for {name}! Welcome to OpenManus Platform." except Exception as e: return f"ā Registration failed: {str(e)}" def login_user(mobile, password): """User authentication""" if not mobile or not password: return "ā Please provide mobile number and password" try: conn = sqlite3.connect("openmanus.db") cursor = conn.cursor() # Verify credentials password_hash = hash_password(password) cursor.execute(""" SELECT id, full_name FROM users WHERE mobile_number = ? AND password_hash = ? AND is_active = 1 """, (mobile, password_hash)) user = cursor.fetchone() if user: # Update last login cursor.execute(""" UPDATE users SET last_login = CURRENT_TIMESTAMP WHERE id = ? """, (user[0],)) conn.commit() conn.close() return f"ā Welcome back, {user[1]}! Login successful." else: conn.close() return "ā Invalid mobile number or password" except Exception as e: return f"ā Login failed: {str(e)}" def use_ai_model(model_name, input_text, user_session="guest"): """Simulate AI model usage""" if not input_text.strip(): return "Please enter some text for the AI model to process." # Simulate model processing response_templates = { "text": f"š§ {model_name} processed: '{input_text}'\n\n⨠AI Response: This is a simulated response from the {model_name} model. In production, this would connect to the actual model API.", "image": f"š¼ļø {model_name} would generate/edit an image based on: '{input_text}'\n\nšø Output: Image processing complete (simulated)", "audio": f"šµ {model_name} audio processing for: '{input_text}'\n\nš Output: Audio generated/processed (simulated)", "multimodal": f"š¤ {model_name} multimodal processing: '{input_text}'\n\nšÆ Output: Combined AI analysis complete (simulated)" } # Determine response type based on model if any(x in model_name.lower() for x in ["image", "flux", "diffusion", "face", "avatar"]): response_type = "image" elif any(x in model_name.lower() for x in ["tts", "speech", "audio", "whisper", "wav2vec"]): response_type = "audio" elif any(x in model_name.lower() for x in ["vl", "blip", "vision", "talking"]): response_type = "multimodal" else: response_type = "text" return response_templates[response_type] def get_cloudflare_status(): """Get Cloudflare services status""" services = [] if CLOUDFLARE_CONFIG["d1_database_id"]: services.append("ā D1 Database Connected") else: services.append("āļø D1 Database (Configure CLOUDFLARE_D1_DATABASE_ID)") if CLOUDFLARE_CONFIG["r2_bucket_name"]: services.append("ā R2 Storage Connected") else: services.append("āļø R2 Storage (Configure CLOUDFLARE_R2_BUCKET_NAME)") if CLOUDFLARE_CONFIG["kv_namespace_id"]: services.append("ā KV Cache Connected") else: services.append("āļø KV Cache (Configure CLOUDFLARE_KV_NAMESPACE_ID)") if CLOUDFLARE_CONFIG["durable_objects_id"]: services.append("ā Durable Objects Connected") else: services.append("āļø Durable Objects (Configure CLOUDFLARE_DURABLE_OBJECTS_ID)") return "\n".join(services) # Initialize database init_database() # Create Gradio interface with gr.Blocks( title="OpenManus - Complete AI Platform", theme=gr.themes.Soft(), css=""" .container { max-width: 1400px; margin: 0 auto; } .header { text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 15px; margin-bottom: 25px; } .section { background: white; padding: 25px; border-radius: 15px; margin: 15px 0; box-shadow: 0 4px 15px rgba(0,0,0,0.1); } """ ) as app: # Header gr.HTML("""
Mobile Authentication + 200+ AI Models + Cloudflare Services
š§ Qwen & DeepSeek | š¼ļø Image Processing | šµ TTS/STT | š¤ Face Swap | š Arabic-English | āļø Cloud Integration
CLOUDFLARE_API_TOKEN - API authenticationCLOUDFLARE_ACCOUNT_ID - Account identifierCLOUDFLARE_D1_DATABASE_ID - D1 databaseCLOUDFLARE_R2_BUCKET_NAME - R2 storageCLOUDFLARE_KV_NAMESPACE_ID - KV cacheCLOUDFLARE_DURABLE_OBJECTS_ID - Durable objectsComplete AI Platform successfully deployed on HuggingFace Spaces with Docker!