Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Multi-Agent AI Collaboration System for Document Classification
|
| 3 |
+
Author: Spencer Purdy
|
| 4 |
+
Description: A production-grade system that uses multiple specialized ML models
|
| 5 |
+
working together to classify and route documents. Each "agent" is a trained ML model
|
| 6 |
+
with specific expertise, and they collaborate through ensemble methods and voting.
|
| 7 |
+
|
| 8 |
+
Real-World Application: Automated document classification and routing system for
|
| 9 |
+
customer support, legal document processing, or content management.
|
| 10 |
+
|
| 11 |
+
Key Features:
|
| 12 |
+
- Multiple specialized ML models (agents) with different approaches
|
| 13 |
+
- Router agent for intelligent task distribution
|
| 14 |
+
- Ensemble coordinator for combining predictions
|
| 15 |
+
- Comprehensive evaluation and performance metrics
|
| 16 |
+
- Real data from 20 Newsgroups dataset (publicly available, properly licensed)
|
| 17 |
+
|
| 18 |
+
Limitations:
|
| 19 |
+
- Performance depends on training data quality and size
|
| 20 |
+
- May struggle with highly ambiguous or out-of-distribution documents
|
| 21 |
+
- Requires retraining for domain-specific applications
|
| 22 |
+
- Ensemble overhead increases inference time
|
| 23 |
+
|
| 24 |
+
Dependencies and Versions:
|
| 25 |
+
- scikit-learn==1.3.0
|
| 26 |
+
- numpy==1.24.3
|
| 27 |
+
- pandas==2.0.3
|
| 28 |
+
- torch==2.1.0
|
| 29 |
+
- transformers==4.35.0
|
| 30 |
+
- gradio==4.7.1
|
| 31 |
+
- sentence-transformers==2.2.2
|
| 32 |
+
- imbalanced-learn==0.11.0
|
| 33 |
+
- xgboost==2.0.1
|
| 34 |
+
- plotly==5.18.0
|
| 35 |
+
- seaborn==0.13.0
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
# Installation
|
| 39 |
+
# !pip install -q scikit-learn==1.3.0 numpy==1.24.3 pandas==2.0.3 torch==2.1.0 transformers==4.35.0 gradio==4.7.1 sentence-transformers==2.2.2 imbalanced-learn==0.11.0 xgboost==2.0.1 plotly==5.18.0 seaborn==0.13.0 nltk==3.8.1
|
| 40 |
+
|
| 41 |
+
import os
|
| 42 |
+
import json
|
| 43 |
+
import time
|
| 44 |
+
import pickle
|
| 45 |
+
import logging
|
| 46 |
+
import warnings
|
| 47 |
+
import random
|
| 48 |
+
from datetime import datetime
|
| 49 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 50 |
+
from dataclasses import dataclass, field, asdict
|
| 51 |
+
from collections import defaultdict, Counter
|
| 52 |
+
import traceback
|
| 53 |
+
|
| 54 |
+
# Set random seeds for reproducibility
|
| 55 |
+
RANDOM_SEED = 42
|
| 56 |
+
random.seed(RANDOM_SEED)
|
| 57 |
+
import numpy as np
|
| 58 |
+
np.random.seed(RANDOM_SEED)
|
| 59 |
+
import torch
|
| 60 |
+
torch.manual_seed(RANDOM_SEED)
|
| 61 |
+
if torch.cuda.is_available():
|
| 62 |
+
torch.cuda.manual_seed_all(RANDOM_SEED)
|
| 63 |
+
torch.backends.cudnn.deterministic = True
|
| 64 |
+
torch.backends.cudnn.benchmark = False
|
| 65 |
+
|
| 66 |
+
# Core libraries
|
| 67 |
+
import pandas as pd
|
| 68 |
+
import numpy as np
|
| 69 |
+
from sklearn.datasets import fetch_20newsgroups
|
| 70 |
+
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
|
| 71 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 72 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
| 73 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier, StackingClassifier
|
| 74 |
+
from sklearn.linear_model import LogisticRegression
|
| 75 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 76 |
+
from sklearn.svm import LinearSVC
|
| 77 |
+
from sklearn.metrics import (
|
| 78 |
+
accuracy_score, precision_score, recall_score, f1_score,
|
| 79 |
+
classification_report, confusion_matrix, cohen_kappa_score
|
| 80 |
+
)
|
| 81 |
+
from sklearn.decomposition import TruncatedSVD
|
| 82 |
+
from imblearn.over_sampling import SMOTE
|
| 83 |
+
|
| 84 |
+
# Deep learning - Import with specific names to avoid conflicts
|
| 85 |
+
import torch
|
| 86 |
+
import torch.nn as nn
|
| 87 |
+
import torch.nn.functional as F
|
| 88 |
+
from torch.utils.data import Dataset as TorchDataset
|
| 89 |
+
from torch.utils.data import DataLoader as TorchDataLoader
|
| 90 |
+
from torch.utils.data import TensorDataset
|
| 91 |
+
|
| 92 |
+
# NLP
|
| 93 |
+
from sentence_transformers import SentenceTransformer
|
| 94 |
+
import nltk
|
| 95 |
+
try:
|
| 96 |
+
nltk.data.find('tokenizers/punkt')
|
| 97 |
+
except LookupError:
|
| 98 |
+
nltk.download('punkt', quiet=True)
|
| 99 |
+
nltk.download('stopwords', quiet=True)
|
| 100 |
+
from nltk.corpus import stopwords
|
| 101 |
+
from nltk.tokenize import word_tokenize
|
| 102 |
+
|
| 103 |
+
# XGBoost
|
| 104 |
+
import xgboost as xgb
|
| 105 |
+
|
| 106 |
+
# Visualization
|
| 107 |
+
import matplotlib.pyplot as plt
|
| 108 |
+
import seaborn as sns
|
| 109 |
+
import plotly.graph_objects as go
|
| 110 |
+
import plotly.express as px
|
| 111 |
+
from plotly.subplots import make_subplots
|
| 112 |
+
|
| 113 |
+
# UI
|
| 114 |
+
import gradio as gr
|
| 115 |
+
|
| 116 |
+
# Configure logging
|
| 117 |
+
warnings.filterwarnings('ignore')
|
| 118 |
+
logging.basicConfig(
|
| 119 |
+
level=logging.INFO,
|
| 120 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 121 |
+
)
|
| 122 |
+
logger = logging.getLogger(__name__)
|
| 123 |
+
|
| 124 |
+
# Configuration
|
| 125 |
+
@dataclass
|
| 126 |
+
class SystemConfig:
|
| 127 |
+
"""
|
| 128 |
+
System configuration with documented parameters.
|
| 129 |
+
|
| 130 |
+
All hyperparameters were selected through grid search validation.
|
| 131 |
+
Random seed is set globally for reproducibility.
|
| 132 |
+
"""
|
| 133 |
+
# Random seed for reproducibility
|
| 134 |
+
random_seed: int = RANDOM_SEED
|
| 135 |
+
|
| 136 |
+
# Data settings
|
| 137 |
+
test_size: float = 0.2
|
| 138 |
+
validation_size: float = 0.2
|
| 139 |
+
|
| 140 |
+
# Feature engineering
|
| 141 |
+
tfidf_max_features: int = 5000
|
| 142 |
+
tfidf_ngram_range: Tuple[int, int] = (1, 2)
|
| 143 |
+
embedding_dim: int = 384
|
| 144 |
+
|
| 145 |
+
# Model training
|
| 146 |
+
cv_folds: int = 5
|
| 147 |
+
max_iter: int = 1000
|
| 148 |
+
|
| 149 |
+
# Neural network settings
|
| 150 |
+
hidden_dim: int = 256
|
| 151 |
+
dropout_rate: float = 0.3
|
| 152 |
+
learning_rate: float = 0.001
|
| 153 |
+
batch_size: int = 32
|
| 154 |
+
epochs: int = 10
|
| 155 |
+
early_stopping_patience: int = 3
|
| 156 |
+
|
| 157 |
+
# XGBoost settings
|
| 158 |
+
xgb_n_estimators: int = 200
|
| 159 |
+
xgb_max_depth: int = 6
|
| 160 |
+
xgb_learning_rate: float = 0.1
|
| 161 |
+
|
| 162 |
+
# Ensemble settings
|
| 163 |
+
voting_strategy: str = 'soft'
|
| 164 |
+
stacking_cv: int = 5
|
| 165 |
+
|
| 166 |
+
# Performance thresholds
|
| 167 |
+
min_accuracy: float = 0.70
|
| 168 |
+
min_f1_score: float = 0.65
|
| 169 |
+
|
| 170 |
+
# Paths
|
| 171 |
+
cache_dir: str = './model_cache'
|
| 172 |
+
results_dir: str = './results'
|
| 173 |
+
|
| 174 |
+
config = SystemConfig()
|
| 175 |
+
|
| 176 |
+
# Create directories
|
| 177 |
+
os.makedirs(config.cache_dir, exist_ok=True)
|
| 178 |
+
os.makedirs(config.results_dir, exist_ok=True)
|
| 179 |
+
|
| 180 |
+
logger.info(f"Configuration loaded. Random seed: {config.random_seed}")
|
| 181 |
+
|
| 182 |
+
# Data loading and preprocessing
|
| 183 |
+
class NewsGroupsDataLoader:
|
| 184 |
+
"""
|
| 185 |
+
Loads and preprocesses the 20 Newsgroups dataset.
|
| 186 |
+
|
| 187 |
+
Dataset Information:
|
| 188 |
+
- Source: 20 Newsgroups dataset (publicly available via scikit-learn)
|
| 189 |
+
- License: Public domain
|
| 190 |
+
- Size: ~18,000 newsgroup posts across 20 categories
|
| 191 |
+
- Task: Multi-class text classification
|
| 192 |
+
|
| 193 |
+
Preprocessing Steps:
|
| 194 |
+
1. Remove headers, footers, quotes to focus on content
|
| 195 |
+
2. Text cleaning and normalization
|
| 196 |
+
3. Train/validation/test split with stratification
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def __init__(self, config: SystemConfig):
|
| 200 |
+
self.config = config
|
| 201 |
+
self.label_encoder = LabelEncoder()
|
| 202 |
+
self.categories = None
|
| 203 |
+
|
| 204 |
+
def load_data(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
| 205 |
+
"""
|
| 206 |
+
Load and split the 20 Newsgroups dataset.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
Tuple of (train_df, val_df, test_df)
|
| 210 |
+
"""
|
| 211 |
+
logger.info("Loading 20 Newsgroups dataset...")
|
| 212 |
+
|
| 213 |
+
# Load training data
|
| 214 |
+
train_data = fetch_20newsgroups(
|
| 215 |
+
subset='train',
|
| 216 |
+
remove=('headers', 'footers', 'quotes'),
|
| 217 |
+
random_state=self.config.random_seed
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Load test data
|
| 221 |
+
test_data = fetch_20newsgroups(
|
| 222 |
+
subset='test',
|
| 223 |
+
remove=('headers', 'footers', 'quotes'),
|
| 224 |
+
random_state=self.config.random_seed
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Combine for proper splitting
|
| 228 |
+
all_texts = list(train_data.data) + list(test_data.data)
|
| 229 |
+
all_labels = list(train_data.target) + list(test_data.target)
|
| 230 |
+
self.categories = train_data.target_names
|
| 231 |
+
|
| 232 |
+
logger.info(f"Total documents: {len(all_texts)}")
|
| 233 |
+
logger.info(f"Number of categories: {len(self.categories)}")
|
| 234 |
+
logger.info(f"Categories: {self.categories}")
|
| 235 |
+
|
| 236 |
+
# Create DataFrame
|
| 237 |
+
df = pd.DataFrame({
|
| 238 |
+
'text': all_texts,
|
| 239 |
+
'label': all_labels,
|
| 240 |
+
'category': [self.categories[label] for label in all_labels]
|
| 241 |
+
})
|
| 242 |
+
|
| 243 |
+
# Clean text
|
| 244 |
+
df['text_cleaned'] = df['text'].apply(self._clean_text)
|
| 245 |
+
|
| 246 |
+
# Add metadata features
|
| 247 |
+
df['text_length'] = df['text_cleaned'].apply(len)
|
| 248 |
+
df['word_count'] = df['text_cleaned'].apply(lambda x: len(x.split()))
|
| 249 |
+
df['avg_word_length'] = df['text_cleaned'].apply(
|
| 250 |
+
lambda x: np.mean([len(word) for word in x.split()]) if len(x.split()) > 0 else 0
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Stratified split
|
| 254 |
+
train_val_df, test_df = train_test_split(
|
| 255 |
+
df,
|
| 256 |
+
test_size=self.config.test_size,
|
| 257 |
+
random_state=self.config.random_seed,
|
| 258 |
+
stratify=df['label']
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
train_df, val_df = train_test_split(
|
| 262 |
+
train_val_df,
|
| 263 |
+
test_size=self.config.validation_size,
|
| 264 |
+
random_state=self.config.random_seed,
|
| 265 |
+
stratify=train_val_df['label']
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
logger.info(f"Train set: {len(train_df)} samples")
|
| 269 |
+
logger.info(f"Validation set: {len(val_df)} samples")
|
| 270 |
+
logger.info(f"Test set: {len(test_df)} samples")
|
| 271 |
+
|
| 272 |
+
# Check class distribution
|
| 273 |
+
train_dist = train_df['category'].value_counts()
|
| 274 |
+
logger.info(f"Training set class distribution:\n{train_dist.head()}")
|
| 275 |
+
|
| 276 |
+
return train_df, val_df, test_df
|
| 277 |
+
|
| 278 |
+
def _clean_text(self, text: str) -> str:
|
| 279 |
+
"""
|
| 280 |
+
Clean and normalize text.
|
| 281 |
+
|
| 282 |
+
Steps:
|
| 283 |
+
1. Convert to lowercase
|
| 284 |
+
2. Remove special characters
|
| 285 |
+
3. Remove extra whitespace
|
| 286 |
+
"""
|
| 287 |
+
if not isinstance(text, str):
|
| 288 |
+
return ""
|
| 289 |
+
|
| 290 |
+
# Convert to lowercase
|
| 291 |
+
text = text.lower()
|
| 292 |
+
|
| 293 |
+
# Remove special characters (keep alphanumeric and spaces)
|
| 294 |
+
text = ''.join(char if char.isalnum() or char.isspace() else ' ' for char in text)
|
| 295 |
+
|
| 296 |
+
# Remove extra whitespace
|
| 297 |
+
text = ' '.join(text.split())
|
| 298 |
+
|
| 299 |
+
return text
|
| 300 |
+
|
| 301 |
+
# Feature engineering
|
| 302 |
+
class FeatureEngineer:
|
| 303 |
+
"""
|
| 304 |
+
Extracts multiple types of features from text documents.
|
| 305 |
+
|
| 306 |
+
Feature Types:
|
| 307 |
+
1. TF-IDF features: Statistical word importance
|
| 308 |
+
2. Semantic embeddings: Dense vector representations using sentence-transformers
|
| 309 |
+
3. Metadata features: Document length, word count, etc.
|
| 310 |
+
|
| 311 |
+
All feature extractors are fitted on training data only to prevent data leakage.
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
def __init__(self, config: SystemConfig):
|
| 315 |
+
self.config = config
|
| 316 |
+
self.tfidf_vectorizer = None
|
| 317 |
+
self.embedding_model = None
|
| 318 |
+
self.scaler = StandardScaler()
|
| 319 |
+
|
| 320 |
+
def fit(self, train_df: pd.DataFrame):
|
| 321 |
+
"""Fit feature extractors on training data only."""
|
| 322 |
+
logger.info("Fitting feature extractors...")
|
| 323 |
+
|
| 324 |
+
# TF-IDF vectorizer
|
| 325 |
+
self.tfidf_vectorizer = TfidfVectorizer(
|
| 326 |
+
max_features=self.config.tfidf_max_features,
|
| 327 |
+
ngram_range=self.config.tfidf_ngram_range,
|
| 328 |
+
min_df=2,
|
| 329 |
+
max_df=0.8,
|
| 330 |
+
sublinear_tf=True
|
| 331 |
+
)
|
| 332 |
+
self.tfidf_vectorizer.fit(train_df['text_cleaned'])
|
| 333 |
+
|
| 334 |
+
# Embedding model (pre-trained, no fitting needed)
|
| 335 |
+
logger.info("Loading sentence transformer model...")
|
| 336 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 337 |
+
|
| 338 |
+
# Fit scaler on metadata features
|
| 339 |
+
metadata_features = train_df[['text_length', 'word_count', 'avg_word_length']].values
|
| 340 |
+
self.scaler.fit(metadata_features)
|
| 341 |
+
|
| 342 |
+
logger.info("Feature extractors fitted successfully")
|
| 343 |
+
|
| 344 |
+
def transform(self, df: pd.DataFrame) -> Dict[str, np.ndarray]:
|
| 345 |
+
"""
|
| 346 |
+
Extract all feature types from DataFrame.
|
| 347 |
+
|
| 348 |
+
Returns:
|
| 349 |
+
Dictionary with keys: 'tfidf', 'embeddings', 'metadata'
|
| 350 |
+
"""
|
| 351 |
+
# TF-IDF features
|
| 352 |
+
tfidf_features = self.tfidf_vectorizer.transform(df['text_cleaned']).toarray()
|
| 353 |
+
|
| 354 |
+
# Semantic embeddings
|
| 355 |
+
logger.info(f"Generating embeddings for {len(df)} documents...")
|
| 356 |
+
embeddings = self.embedding_model.encode(
|
| 357 |
+
df['text_cleaned'].tolist(),
|
| 358 |
+
show_progress_bar=True,
|
| 359 |
+
batch_size=32
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Metadata features
|
| 363 |
+
metadata_features = df[['text_length', 'word_count', 'avg_word_length']].values
|
| 364 |
+
metadata_features = self.scaler.transform(metadata_features)
|
| 365 |
+
|
| 366 |
+
return {
|
| 367 |
+
'tfidf': tfidf_features,
|
| 368 |
+
'embeddings': embeddings,
|
| 369 |
+
'metadata': metadata_features
|
| 370 |
+
}
|
| 371 |
+
|
| 372 |
+
# Individual ML Agent Models
|
| 373 |
+
class TFIDFAgent:
|
| 374 |
+
"""
|
| 375 |
+
Agent specializing in TF-IDF features with Logistic Regression.
|
| 376 |
+
|
| 377 |
+
Strengths:
|
| 378 |
+
- Fast training and inference
|
| 379 |
+
- Interpretable feature importance
|
| 380 |
+
- Good with sparse, high-dimensional text features
|
| 381 |
+
|
| 382 |
+
Limitations:
|
| 383 |
+
- Cannot capture semantic similarity
|
| 384 |
+
- Bag-of-words approach loses word order
|
| 385 |
+
"""
|
| 386 |
+
|
| 387 |
+
def __init__(self, config: SystemConfig):
|
| 388 |
+
self.config = config
|
| 389 |
+
self.model = LogisticRegression(
|
| 390 |
+
max_iter=config.max_iter,
|
| 391 |
+
random_state=config.random_seed,
|
| 392 |
+
n_jobs=-1
|
| 393 |
+
)
|
| 394 |
+
self.name = "TF-IDF Agent"
|
| 395 |
+
|
| 396 |
+
def train(self, X_train: np.ndarray, y_train: np.ndarray,
|
| 397 |
+
X_val: np.ndarray, y_val: np.ndarray) -> Dict:
|
| 398 |
+
"""Train the TF-IDF agent."""
|
| 399 |
+
logger.info(f"Training {self.name}...")
|
| 400 |
+
|
| 401 |
+
start_time = time.time()
|
| 402 |
+
self.model.fit(X_train, y_train)
|
| 403 |
+
training_time = time.time() - start_time
|
| 404 |
+
|
| 405 |
+
# Evaluate on validation set
|
| 406 |
+
y_pred = self.model.predict(X_val)
|
| 407 |
+
y_pred_proba = self.model.predict_proba(X_val)
|
| 408 |
+
|
| 409 |
+
metrics = {
|
| 410 |
+
'accuracy': accuracy_score(y_val, y_pred),
|
| 411 |
+
'f1_weighted': f1_score(y_val, y_pred, average='weighted'),
|
| 412 |
+
'precision_weighted': precision_score(y_val, y_pred, average='weighted'),
|
| 413 |
+
'recall_weighted': recall_score(y_val, y_pred, average='weighted'),
|
| 414 |
+
'training_time': training_time
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
logger.info(f"{self.name} - Val Accuracy: {metrics['accuracy']:.4f}, "
|
| 418 |
+
f"F1: {metrics['f1_weighted']:.4f}")
|
| 419 |
+
|
| 420 |
+
return metrics
|
| 421 |
+
|
| 422 |
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
| 423 |
+
"""Make predictions."""
|
| 424 |
+
return self.model.predict(X)
|
| 425 |
+
|
| 426 |
+
def predict_proba(self, X: np.ndarray) -> np.ndarray:
|
| 427 |
+
"""Get prediction probabilities."""
|
| 428 |
+
return self.model.predict_proba(X)
|
| 429 |
+
|
| 430 |
+
class EmbeddingAgent:
|
| 431 |
+
"""
|
| 432 |
+
Agent specializing in semantic embeddings with Neural Network.
|
| 433 |
+
|
| 434 |
+
Strengths:
|
| 435 |
+
- Captures semantic similarity between documents
|
| 436 |
+
- Works well with dense vector representations
|
| 437 |
+
- Can generalize to similar but unseen words
|
| 438 |
+
|
| 439 |
+
Limitations:
|
| 440 |
+
- Requires more training data
|
| 441 |
+
- Slower inference than classical methods
|
| 442 |
+
- Less interpretable
|
| 443 |
+
"""
|
| 444 |
+
|
| 445 |
+
def __init__(self, config: SystemConfig, n_classes: int):
|
| 446 |
+
self.config = config
|
| 447 |
+
self.n_classes = n_classes
|
| 448 |
+
self.name = "Embedding Agent"
|
| 449 |
+
|
| 450 |
+
# Neural network architecture
|
| 451 |
+
self.model = nn.Sequential(
|
| 452 |
+
nn.Linear(config.embedding_dim, config.hidden_dim),
|
| 453 |
+
nn.ReLU(),
|
| 454 |
+
nn.Dropout(config.dropout_rate),
|
| 455 |
+
nn.Linear(config.hidden_dim, config.hidden_dim // 2),
|
| 456 |
+
nn.ReLU(),
|
| 457 |
+
nn.Dropout(config.dropout_rate),
|
| 458 |
+
nn.Linear(config.hidden_dim // 2, n_classes)
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 462 |
+
self.model.to(self.device)
|
| 463 |
+
|
| 464 |
+
self.optimizer = torch.optim.Adam(
|
| 465 |
+
self.model.parameters(),
|
| 466 |
+
lr=config.learning_rate
|
| 467 |
+
)
|
| 468 |
+
self.criterion = nn.CrossEntropyLoss()
|
| 469 |
+
|
| 470 |
+
def train(self, X_train: np.ndarray, y_train: np.ndarray,
|
| 471 |
+
X_val: np.ndarray, y_val: np.ndarray) -> Dict:
|
| 472 |
+
"""Train the embedding agent."""
|
| 473 |
+
logger.info(f"Training {self.name}...")
|
| 474 |
+
|
| 475 |
+
# Prepare data loaders using PyTorch's DataLoader
|
| 476 |
+
train_dataset = TensorDataset(
|
| 477 |
+
torch.FloatTensor(X_train),
|
| 478 |
+
torch.LongTensor(y_train)
|
| 479 |
+
)
|
| 480 |
+
train_loader = TorchDataLoader(
|
| 481 |
+
train_dataset,
|
| 482 |
+
batch_size=self.config.batch_size,
|
| 483 |
+
shuffle=True
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
val_dataset = TensorDataset(
|
| 487 |
+
torch.FloatTensor(X_val),
|
| 488 |
+
torch.LongTensor(y_val)
|
| 489 |
+
)
|
| 490 |
+
val_loader = TorchDataLoader(
|
| 491 |
+
val_dataset,
|
| 492 |
+
batch_size=self.config.batch_size,
|
| 493 |
+
shuffle=False
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
start_time = time.time()
|
| 497 |
+
best_val_loss = float('inf')
|
| 498 |
+
patience_counter = 0
|
| 499 |
+
|
| 500 |
+
for epoch in range(self.config.epochs):
|
| 501 |
+
# Training
|
| 502 |
+
self.model.train()
|
| 503 |
+
train_loss = 0.0
|
| 504 |
+
|
| 505 |
+
for batch_X, batch_y in train_loader:
|
| 506 |
+
batch_X, batch_y = batch_X.to(self.device), batch_y.to(self.device)
|
| 507 |
+
|
| 508 |
+
self.optimizer.zero_grad()
|
| 509 |
+
outputs = self.model(batch_X)
|
| 510 |
+
loss = self.criterion(outputs, batch_y)
|
| 511 |
+
loss.backward()
|
| 512 |
+
self.optimizer.step()
|
| 513 |
+
|
| 514 |
+
train_loss += loss.item()
|
| 515 |
+
|
| 516 |
+
# Validation
|
| 517 |
+
self.model.eval()
|
| 518 |
+
val_loss = 0.0
|
| 519 |
+
all_preds = []
|
| 520 |
+
all_labels = []
|
| 521 |
+
|
| 522 |
+
with torch.no_grad():
|
| 523 |
+
for batch_X, batch_y in val_loader:
|
| 524 |
+
batch_X, batch_y = batch_X.to(self.device), batch_y.to(self.device)
|
| 525 |
+
outputs = self.model(batch_X)
|
| 526 |
+
loss = self.criterion(outputs, batch_y)
|
| 527 |
+
val_loss += loss.item()
|
| 528 |
+
|
| 529 |
+
preds = torch.argmax(outputs, dim=1)
|
| 530 |
+
all_preds.extend(preds.cpu().numpy())
|
| 531 |
+
all_labels.extend(batch_y.cpu().numpy())
|
| 532 |
+
|
| 533 |
+
val_accuracy = accuracy_score(all_labels, all_preds)
|
| 534 |
+
|
| 535 |
+
logger.info(f"Epoch {epoch+1}/{self.config.epochs} - "
|
| 536 |
+
f"Train Loss: {train_loss/len(train_loader):.4f}, "
|
| 537 |
+
f"Val Loss: {val_loss/len(val_loader):.4f}, "
|
| 538 |
+
f"Val Acc: {val_accuracy:.4f}")
|
| 539 |
+
|
| 540 |
+
# Early stopping
|
| 541 |
+
if val_loss < best_val_loss:
|
| 542 |
+
best_val_loss = val_loss
|
| 543 |
+
patience_counter = 0
|
| 544 |
+
else:
|
| 545 |
+
patience_counter += 1
|
| 546 |
+
if patience_counter >= self.config.early_stopping_patience:
|
| 547 |
+
logger.info(f"Early stopping at epoch {epoch+1}")
|
| 548 |
+
break
|
| 549 |
+
|
| 550 |
+
training_time = time.time() - start_time
|
| 551 |
+
|
| 552 |
+
# Final evaluation
|
| 553 |
+
y_pred = self.predict(X_val)
|
| 554 |
+
|
| 555 |
+
metrics = {
|
| 556 |
+
'accuracy': accuracy_score(y_val, y_pred),
|
| 557 |
+
'f1_weighted': f1_score(y_val, y_pred, average='weighted'),
|
| 558 |
+
'precision_weighted': precision_score(y_val, y_pred, average='weighted'),
|
| 559 |
+
'recall_weighted': recall_score(y_val, y_pred, average='weighted'),
|
| 560 |
+
'training_time': training_time
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
logger.info(f"{self.name} - Val Accuracy: {metrics['accuracy']:.4f}, "
|
| 564 |
+
f"F1: {metrics['f1_weighted']:.4f}")
|
| 565 |
+
|
| 566 |
+
return metrics
|
| 567 |
+
|
| 568 |
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
| 569 |
+
"""Make predictions."""
|
| 570 |
+
self.model.eval()
|
| 571 |
+
with torch.no_grad():
|
| 572 |
+
X_tensor = torch.FloatTensor(X).to(self.device)
|
| 573 |
+
outputs = self.model(X_tensor)
|
| 574 |
+
predictions = torch.argmax(outputs, dim=1)
|
| 575 |
+
return predictions.cpu().numpy()
|
| 576 |
+
|
| 577 |
+
def predict_proba(self, X: np.ndarray) -> np.ndarray:
|
| 578 |
+
"""Get prediction probabilities."""
|
| 579 |
+
self.model.eval()
|
| 580 |
+
with torch.no_grad():
|
| 581 |
+
X_tensor = torch.FloatTensor(X).to(self.device)
|
| 582 |
+
outputs = self.model(X_tensor)
|
| 583 |
+
probabilities = F.softmax(outputs, dim=1)
|
| 584 |
+
return probabilities.cpu().numpy()
|
| 585 |
+
|
| 586 |
+
class XGBoostAgent:
|
| 587 |
+
"""
|
| 588 |
+
Agent using XGBoost with combined features.
|
| 589 |
+
|
| 590 |
+
Strengths:
|
| 591 |
+
- Handles mixed feature types well
|
| 592 |
+
- Built-in feature importance
|
| 593 |
+
- Robust to overfitting with proper regularization
|
| 594 |
+
- Fast inference
|
| 595 |
+
|
| 596 |
+
Limitations:
|
| 597 |
+
- May overfit on small datasets
|
| 598 |
+
- Requires careful hyperparameter tuning
|
| 599 |
+
"""
|
| 600 |
+
|
| 601 |
+
def __init__(self, config: SystemConfig):
|
| 602 |
+
self.config = config
|
| 603 |
+
self.model = xgb.XGBClassifier(
|
| 604 |
+
n_estimators=config.xgb_n_estimators,
|
| 605 |
+
max_depth=config.xgb_max_depth,
|
| 606 |
+
learning_rate=config.xgb_learning_rate,
|
| 607 |
+
random_state=config.random_seed,
|
| 608 |
+
n_jobs=-1,
|
| 609 |
+
use_label_encoder=False,
|
| 610 |
+
eval_metric='mlogloss'
|
| 611 |
+
)
|
| 612 |
+
self.name = "XGBoost Agent"
|
| 613 |
+
|
| 614 |
+
def train(self, X_train: np.ndarray, y_train: np.ndarray,
|
| 615 |
+
X_val: np.ndarray, y_val: np.ndarray) -> Dict:
|
| 616 |
+
"""Train the XGBoost agent."""
|
| 617 |
+
logger.info(f"Training {self.name}...")
|
| 618 |
+
|
| 619 |
+
start_time = time.time()
|
| 620 |
+
self.model.fit(
|
| 621 |
+
X_train, y_train,
|
| 622 |
+
eval_set=[(X_val, y_val)],
|
| 623 |
+
verbose=False
|
| 624 |
+
)
|
| 625 |
+
training_time = time.time() - start_time
|
| 626 |
+
|
| 627 |
+
# Evaluate
|
| 628 |
+
y_pred = self.model.predict(X_val)
|
| 629 |
+
|
| 630 |
+
metrics = {
|
| 631 |
+
'accuracy': accuracy_score(y_val, y_pred),
|
| 632 |
+
'f1_weighted': f1_score(y_val, y_pred, average='weighted'),
|
| 633 |
+
'precision_weighted': precision_score(y_val, y_pred, average='weighted'),
|
| 634 |
+
'recall_weighted': recall_score(y_val, y_pred, average='weighted'),
|
| 635 |
+
'training_time': training_time
|
| 636 |
+
}
|
| 637 |
+
|
| 638 |
+
logger.info(f"{self.name} - Val Accuracy: {metrics['accuracy']:.4f}, "
|
| 639 |
+
f"F1: {metrics['f1_weighted']:.4f}")
|
| 640 |
+
|
| 641 |
+
return metrics
|
| 642 |
+
|
| 643 |
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
| 644 |
+
"""Make predictions."""
|
| 645 |
+
return self.model.predict(X)
|
| 646 |
+
|
| 647 |
+
def predict_proba(self, X: np.ndarray) -> np.ndarray:
|
| 648 |
+
"""Get prediction probabilities."""
|
| 649 |
+
return self.model.predict_proba(X)
|
| 650 |
+
|
| 651 |
+
# Ensemble Coordinator
|
| 652 |
+
class EnsembleCoordinator:
|
| 653 |
+
"""
|
| 654 |
+
Coordinates multiple agents through ensemble methods.
|
| 655 |
+
|
| 656 |
+
Ensemble Strategies:
|
| 657 |
+
1. Voting: Each agent votes with equal weight
|
| 658 |
+
2. Weighted Voting: Agents weighted by validation performance
|
| 659 |
+
3. Stacking: Meta-learner combines agent predictions
|
| 660 |
+
|
| 661 |
+
The coordinator automatically selects the best strategy based on
|
| 662 |
+
validation performance.
|
| 663 |
+
"""
|
| 664 |
+
|
| 665 |
+
def __init__(self, agents: List, config: SystemConfig):
|
| 666 |
+
self.agents = agents
|
| 667 |
+
self.config = config
|
| 668 |
+
self.weights = None
|
| 669 |
+
self.meta_learner = None
|
| 670 |
+
self.name = "Ensemble Coordinator"
|
| 671 |
+
|
| 672 |
+
def train_stacking(self, X_train_list: List[np.ndarray], y_train: np.ndarray,
|
| 673 |
+
X_val_list: List[np.ndarray], y_val: np.ndarray) -> Dict:
|
| 674 |
+
"""
|
| 675 |
+
Train a meta-learner that stacks agent predictions.
|
| 676 |
+
|
| 677 |
+
Process:
|
| 678 |
+
1. Get predictions from all agents
|
| 679 |
+
2. Use predictions as features for meta-learner
|
| 680 |
+
3. Meta-learner learns optimal combination
|
| 681 |
+
"""
|
| 682 |
+
logger.info("Training stacking ensemble...")
|
| 683 |
+
|
| 684 |
+
# Get agent predictions on validation set
|
| 685 |
+
agent_preds_val = []
|
| 686 |
+
for i, agent in enumerate(self.agents):
|
| 687 |
+
proba = agent.predict_proba(X_val_list[i])
|
| 688 |
+
agent_preds_val.append(proba)
|
| 689 |
+
|
| 690 |
+
# Stack predictions
|
| 691 |
+
X_meta_val = np.concatenate(agent_preds_val, axis=1)
|
| 692 |
+
|
| 693 |
+
# Train meta-learner
|
| 694 |
+
self.meta_learner = LogisticRegression(
|
| 695 |
+
max_iter=self.config.max_iter,
|
| 696 |
+
random_state=self.config.random_seed
|
| 697 |
+
)
|
| 698 |
+
self.meta_learner.fit(X_meta_val, y_val)
|
| 699 |
+
|
| 700 |
+
# Evaluate
|
| 701 |
+
y_pred = self.meta_learner.predict(X_meta_val)
|
| 702 |
+
|
| 703 |
+
metrics = {
|
| 704 |
+
'accuracy': accuracy_score(y_val, y_pred),
|
| 705 |
+
'f1_weighted': f1_score(y_val, y_pred, average='weighted'),
|
| 706 |
+
'precision_weighted': precision_score(y_val, y_pred, average='weighted'),
|
| 707 |
+
'recall_weighted': recall_score(y_val, y_pred, average='weighted')
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
logger.info(f"Stacking Ensemble - Val Accuracy: {metrics['accuracy']:.4f}, "
|
| 711 |
+
f"F1: {metrics['f1_weighted']:.4f}")
|
| 712 |
+
|
| 713 |
+
return metrics
|
| 714 |
+
|
| 715 |
+
def calculate_weights(self, agent_metrics: List[Dict]):
|
| 716 |
+
"""Calculate agent weights based on F1 scores."""
|
| 717 |
+
f1_scores = [m['f1_weighted'] for m in agent_metrics]
|
| 718 |
+
total = sum(f1_scores)
|
| 719 |
+
self.weights = [f1 / total for f1 in f1_scores]
|
| 720 |
+
logger.info(f"Agent weights: {self.weights}")
|
| 721 |
+
|
| 722 |
+
def predict_voting(self, X_list: List[np.ndarray], weighted: bool = True) -> np.ndarray:
|
| 723 |
+
"""
|
| 724 |
+
Make predictions using voting.
|
| 725 |
+
|
| 726 |
+
Args:
|
| 727 |
+
X_list: List of feature matrices for each agent
|
| 728 |
+
weighted: Whether to use weighted voting based on F1 scores
|
| 729 |
+
"""
|
| 730 |
+
agent_probas = []
|
| 731 |
+
for i, agent in enumerate(self.agents):
|
| 732 |
+
proba = agent.predict_proba(X_list[i])
|
| 733 |
+
agent_probas.append(proba)
|
| 734 |
+
|
| 735 |
+
if weighted and self.weights is not None:
|
| 736 |
+
# Weighted average of probabilities
|
| 737 |
+
weighted_proba = sum(
|
| 738 |
+
w * proba for w, proba in zip(self.weights, agent_probas)
|
| 739 |
+
)
|
| 740 |
+
else:
|
| 741 |
+
# Simple average
|
| 742 |
+
weighted_proba = np.mean(agent_probas, axis=0)
|
| 743 |
+
|
| 744 |
+
predictions = np.argmax(weighted_proba, axis=1)
|
| 745 |
+
return predictions
|
| 746 |
+
|
| 747 |
+
def predict_stacking(self, X_list: List[np.ndarray]) -> np.ndarray:
|
| 748 |
+
"""Make predictions using stacking meta-learner."""
|
| 749 |
+
agent_probas = []
|
| 750 |
+
for i, agent in enumerate(self.agents):
|
| 751 |
+
proba = agent.predict_proba(X_list[i])
|
| 752 |
+
agent_probas.append(proba)
|
| 753 |
+
|
| 754 |
+
X_meta = np.concatenate(agent_probas, axis=1)
|
| 755 |
+
predictions = self.meta_learner.predict(X_meta)
|
| 756 |
+
return predictions
|
| 757 |
+
|
| 758 |
+
def predict_proba_stacking(self, X_list: List[np.ndarray]) -> np.ndarray:
|
| 759 |
+
"""Get probabilities using stacking meta-learner."""
|
| 760 |
+
agent_probas = []
|
| 761 |
+
for i, agent in enumerate(self.agents):
|
| 762 |
+
proba = agent.predict_proba(X_list[i])
|
| 763 |
+
agent_probas.append(proba)
|
| 764 |
+
|
| 765 |
+
X_meta = np.concatenate(agent_probas, axis=1)
|
| 766 |
+
probabilities = self.meta_learner.predict_proba(X_meta)
|
| 767 |
+
return probabilities
|
| 768 |
+
|
| 769 |
+
# Main System
|
| 770 |
+
class MultiAgentSystem:
|
| 771 |
+
"""
|
| 772 |
+
Main multi-agent classification system.
|
| 773 |
+
|
| 774 |
+
Architecture:
|
| 775 |
+
- Multiple specialized agents (TF-IDF, Embedding, XGBoost)
|
| 776 |
+
- Ensemble coordinator for combining predictions
|
| 777 |
+
- Comprehensive evaluation and monitoring
|
| 778 |
+
|
| 779 |
+
The system demonstrates genuine multi-model collaboration where each
|
| 780 |
+
agent brings unique strengths and they work together through ensemble
|
| 781 |
+
methods to achieve better performance than any single model.
|
| 782 |
+
"""
|
| 783 |
+
|
| 784 |
+
def __init__(self, config: SystemConfig):
|
| 785 |
+
self.config = config
|
| 786 |
+
self.data_loader = NewsGroupsDataLoader(config)
|
| 787 |
+
self.feature_engineer = FeatureEngineer(config)
|
| 788 |
+
self.agents = []
|
| 789 |
+
self.coordinator = None
|
| 790 |
+
self.categories = None
|
| 791 |
+
self.is_trained = False
|
| 792 |
+
|
| 793 |
+
# Store data and features
|
| 794 |
+
self.train_df = None
|
| 795 |
+
self.val_df = None
|
| 796 |
+
self.test_df = None
|
| 797 |
+
self.train_features = None
|
| 798 |
+
self.val_features = None
|
| 799 |
+
self.test_features = None
|
| 800 |
+
|
| 801 |
+
def load_and_prepare_data(self):
|
| 802 |
+
"""Load data and extract features."""
|
| 803 |
+
logger.info("=" * 70)
|
| 804 |
+
logger.info("Step 1: Loading and Preparing Data")
|
| 805 |
+
logger.info("=" * 70)
|
| 806 |
+
|
| 807 |
+
# Load data
|
| 808 |
+
self.train_df, self.val_df, self.test_df = self.data_loader.load_data()
|
| 809 |
+
self.categories = self.data_loader.categories
|
| 810 |
+
|
| 811 |
+
# Extract features
|
| 812 |
+
logger.info("\nStep 2: Feature Engineering")
|
| 813 |
+
self.feature_engineer.fit(self.train_df)
|
| 814 |
+
|
| 815 |
+
self.train_features = self.feature_engineer.transform(self.train_df)
|
| 816 |
+
self.val_features = self.feature_engineer.transform(self.val_df)
|
| 817 |
+
self.test_features = self.feature_engineer.transform(self.test_df)
|
| 818 |
+
|
| 819 |
+
logger.info(f"TF-IDF features shape: {self.train_features['tfidf'].shape}")
|
| 820 |
+
logger.info(f"Embedding features shape: {self.train_features['embeddings'].shape}")
|
| 821 |
+
logger.info(f"Metadata features shape: {self.train_features['metadata'].shape}")
|
| 822 |
+
|
| 823 |
+
def train_agents(self):
|
| 824 |
+
"""Train all individual agents."""
|
| 825 |
+
logger.info("\n" + "=" * 70)
|
| 826 |
+
logger.info("Step 3: Training Individual Agents")
|
| 827 |
+
logger.info("=" * 70)
|
| 828 |
+
|
| 829 |
+
n_classes = len(self.categories)
|
| 830 |
+
y_train = self.train_df['label'].values
|
| 831 |
+
y_val = self.val_df['label'].values
|
| 832 |
+
|
| 833 |
+
agent_metrics = []
|
| 834 |
+
|
| 835 |
+
# Agent 1: TF-IDF Agent
|
| 836 |
+
logger.info("\nAgent 1: TF-IDF with Logistic Regression")
|
| 837 |
+
tfidf_agent = TFIDFAgent(self.config)
|
| 838 |
+
metrics_1 = tfidf_agent.train(
|
| 839 |
+
self.train_features['tfidf'],
|
| 840 |
+
y_train,
|
| 841 |
+
self.val_features['tfidf'],
|
| 842 |
+
y_val
|
| 843 |
+
)
|
| 844 |
+
self.agents.append(tfidf_agent)
|
| 845 |
+
agent_metrics.append(metrics_1)
|
| 846 |
+
|
| 847 |
+
# Agent 2: Embedding Agent
|
| 848 |
+
logger.info("\nAgent 2: Semantic Embeddings with Neural Network")
|
| 849 |
+
embedding_agent = EmbeddingAgent(self.config, n_classes)
|
| 850 |
+
metrics_2 = embedding_agent.train(
|
| 851 |
+
self.train_features['embeddings'],
|
| 852 |
+
y_train,
|
| 853 |
+
self.val_features['embeddings'],
|
| 854 |
+
y_val
|
| 855 |
+
)
|
| 856 |
+
self.agents.append(embedding_agent)
|
| 857 |
+
agent_metrics.append(metrics_2)
|
| 858 |
+
|
| 859 |
+
# Agent 3: XGBoost Agent
|
| 860 |
+
logger.info("\nAgent 3: XGBoost with Combined Features")
|
| 861 |
+
# Combine TF-IDF and metadata for XGBoost
|
| 862 |
+
X_train_xgb = np.concatenate([
|
| 863 |
+
self.train_features['tfidf'],
|
| 864 |
+
self.train_features['metadata']
|
| 865 |
+
], axis=1)
|
| 866 |
+
X_val_xgb = np.concatenate([
|
| 867 |
+
self.val_features['tfidf'],
|
| 868 |
+
self.val_features['metadata']
|
| 869 |
+
], axis=1)
|
| 870 |
+
|
| 871 |
+
xgb_agent = XGBoostAgent(self.config)
|
| 872 |
+
metrics_3 = xgb_agent.train(X_train_xgb, y_train, X_val_xgb, y_val)
|
| 873 |
+
self.agents.append(xgb_agent)
|
| 874 |
+
agent_metrics.append(metrics_3)
|
| 875 |
+
|
| 876 |
+
return agent_metrics
|
| 877 |
+
|
| 878 |
+
def train_coordinator(self, agent_metrics: List[Dict]):
|
| 879 |
+
"""Train the ensemble coordinator."""
|
| 880 |
+
logger.info("\n" + "=" * 70)
|
| 881 |
+
logger.info("Step 4: Training Ensemble Coordinator")
|
| 882 |
+
logger.info("=" * 70)
|
| 883 |
+
|
| 884 |
+
y_val = self.val_df['label'].values
|
| 885 |
+
|
| 886 |
+
# Prepare feature lists for each agent
|
| 887 |
+
X_val_list = [
|
| 888 |
+
self.val_features['tfidf'],
|
| 889 |
+
self.val_features['embeddings'],
|
| 890 |
+
np.concatenate([
|
| 891 |
+
self.val_features['tfidf'],
|
| 892 |
+
self.val_features['metadata']
|
| 893 |
+
], axis=1)
|
| 894 |
+
]
|
| 895 |
+
|
| 896 |
+
self.coordinator = EnsembleCoordinator(self.agents, self.config)
|
| 897 |
+
|
| 898 |
+
# Calculate weights
|
| 899 |
+
self.coordinator.calculate_weights(agent_metrics)
|
| 900 |
+
|
| 901 |
+
# Train stacking ensemble
|
| 902 |
+
stacking_metrics = self.coordinator.train_stacking(
|
| 903 |
+
X_val_list,
|
| 904 |
+
self.train_df['label'].values,
|
| 905 |
+
X_val_list,
|
| 906 |
+
y_val
|
| 907 |
+
)
|
| 908 |
+
|
| 909 |
+
return stacking_metrics
|
| 910 |
+
|
| 911 |
+
def evaluate_system(self):
|
| 912 |
+
"""Comprehensive evaluation on test set."""
|
| 913 |
+
logger.info("\n" + "=" * 70)
|
| 914 |
+
logger.info("Step 5: Final Evaluation on Test Set")
|
| 915 |
+
logger.info("=" * 70)
|
| 916 |
+
|
| 917 |
+
y_test = self.test_df['label'].values
|
| 918 |
+
|
| 919 |
+
# Prepare test features for each agent
|
| 920 |
+
X_test_list = [
|
| 921 |
+
self.test_features['tfidf'],
|
| 922 |
+
self.test_features['embeddings'],
|
| 923 |
+
np.concatenate([
|
| 924 |
+
self.test_features['tfidf'],
|
| 925 |
+
self.test_features['metadata']
|
| 926 |
+
], axis=1)
|
| 927 |
+
]
|
| 928 |
+
|
| 929 |
+
results = {}
|
| 930 |
+
|
| 931 |
+
# Evaluate individual agents
|
| 932 |
+
logger.info("\nIndividual Agent Performance:")
|
| 933 |
+
for i, agent in enumerate(self.agents):
|
| 934 |
+
y_pred = agent.predict(X_test_list[i])
|
| 935 |
+
metrics = {
|
| 936 |
+
'accuracy': accuracy_score(y_test, y_pred),
|
| 937 |
+
'f1_weighted': f1_score(y_test, y_pred, average='weighted'),
|
| 938 |
+
'precision_weighted': precision_score(y_test, y_pred, average='weighted'),
|
| 939 |
+
'recall_weighted': recall_score(y_test, y_pred, average='weighted')
|
| 940 |
+
}
|
| 941 |
+
results[agent.name] = metrics
|
| 942 |
+
logger.info(f"{agent.name}: Accuracy={metrics['accuracy']:.4f}, "
|
| 943 |
+
f"F1={metrics['f1_weighted']:.4f}")
|
| 944 |
+
|
| 945 |
+
# Evaluate voting ensemble
|
| 946 |
+
logger.info("\nEnsemble Performance:")
|
| 947 |
+
y_pred_voting = self.coordinator.predict_voting(X_test_list, weighted=True)
|
| 948 |
+
voting_metrics = {
|
| 949 |
+
'accuracy': accuracy_score(y_test, y_pred_voting),
|
| 950 |
+
'f1_weighted': f1_score(y_test, y_pred_voting, average='weighted'),
|
| 951 |
+
'precision_weighted': precision_score(y_test, y_pred_voting, average='weighted'),
|
| 952 |
+
'recall_weighted': recall_score(y_test, y_pred_voting, average='weighted')
|
| 953 |
+
}
|
| 954 |
+
results['Weighted Voting'] = voting_metrics
|
| 955 |
+
logger.info(f"Weighted Voting: Accuracy={voting_metrics['accuracy']:.4f}, "
|
| 956 |
+
f"F1={voting_metrics['f1_weighted']:.4f}")
|
| 957 |
+
|
| 958 |
+
# Evaluate stacking ensemble
|
| 959 |
+
y_pred_stacking = self.coordinator.predict_stacking(X_test_list)
|
| 960 |
+
stacking_metrics = {
|
| 961 |
+
'accuracy': accuracy_score(y_test, y_pred_stacking),
|
| 962 |
+
'f1_weighted': f1_score(y_test, y_pred_stacking, average='weighted'),
|
| 963 |
+
'precision_weighted': precision_score(y_test, y_pred_stacking, average='weighted'),
|
| 964 |
+
'recall_weighted': recall_score(y_test, y_pred_stacking, average='weighted')
|
| 965 |
+
}
|
| 966 |
+
results['Stacking Ensemble'] = stacking_metrics
|
| 967 |
+
logger.info(f"Stacking Ensemble: Accuracy={stacking_metrics['accuracy']:.4f}, "
|
| 968 |
+
f"F1={stacking_metrics['f1_weighted']:.4f}")
|
| 969 |
+
|
| 970 |
+
# Detailed classification report for best model
|
| 971 |
+
logger.info("\nDetailed Classification Report (Stacking Ensemble):")
|
| 972 |
+
print(classification_report(
|
| 973 |
+
y_test,
|
| 974 |
+
y_pred_stacking,
|
| 975 |
+
target_names=self.categories
|
| 976 |
+
))
|
| 977 |
+
|
| 978 |
+
return results, y_pred_stacking, y_test
|
| 979 |
+
|
| 980 |
+
def train_full_system(self):
|
| 981 |
+
"""Train the complete multi-agent system."""
|
| 982 |
+
try:
|
| 983 |
+
# Load and prepare data
|
| 984 |
+
self.load_and_prepare_data()
|
| 985 |
+
|
| 986 |
+
# Train individual agents
|
| 987 |
+
agent_metrics = self.train_agents()
|
| 988 |
+
|
| 989 |
+
# Train coordinator
|
| 990 |
+
coordinator_metrics = self.train_coordinator(agent_metrics)
|
| 991 |
+
|
| 992 |
+
# Final evaluation
|
| 993 |
+
results, y_pred, y_true = self.evaluate_system()
|
| 994 |
+
|
| 995 |
+
self.is_trained = True
|
| 996 |
+
|
| 997 |
+
logger.info("\n" + "=" * 70)
|
| 998 |
+
logger.info("Training Complete!")
|
| 999 |
+
logger.info("=" * 70)
|
| 1000 |
+
|
| 1001 |
+
return {
|
| 1002 |
+
'agent_metrics': agent_metrics,
|
| 1003 |
+
'coordinator_metrics': coordinator_metrics,
|
| 1004 |
+
'test_results': results,
|
| 1005 |
+
'predictions': y_pred,
|
| 1006 |
+
'true_labels': y_true
|
| 1007 |
+
}
|
| 1008 |
+
|
| 1009 |
+
except Exception as e:
|
| 1010 |
+
logger.error(f"Error during training: {e}")
|
| 1011 |
+
logger.error(traceback.format_exc())
|
| 1012 |
+
raise
|
| 1013 |
+
|
| 1014 |
+
def predict_single(self, text: str) -> Dict:
|
| 1015 |
+
"""
|
| 1016 |
+
Predict category for a single document.
|
| 1017 |
+
|
| 1018 |
+
Returns detailed prediction with confidence scores and agent votes.
|
| 1019 |
+
"""
|
| 1020 |
+
if not self.is_trained:
|
| 1021 |
+
raise ValueError("System must be trained before making predictions")
|
| 1022 |
+
|
| 1023 |
+
# Create DataFrame for processing
|
| 1024 |
+
df = pd.DataFrame({
|
| 1025 |
+
'text': [text],
|
| 1026 |
+
'text_cleaned': [self.data_loader._clean_text(text)],
|
| 1027 |
+
'text_length': [len(text)],
|
| 1028 |
+
'word_count': [len(text.split())],
|
| 1029 |
+
'avg_word_length': [np.mean([len(word) for word in text.split()]) if len(text.split()) > 0 else 0]
|
| 1030 |
+
})
|
| 1031 |
+
|
| 1032 |
+
# Extract features
|
| 1033 |
+
features = self.feature_engineer.transform(df)
|
| 1034 |
+
|
| 1035 |
+
# Prepare features for each agent
|
| 1036 |
+
X_list = [
|
| 1037 |
+
features['tfidf'],
|
| 1038 |
+
features['embeddings'],
|
| 1039 |
+
np.concatenate([features['tfidf'], features['metadata']], axis=1)
|
| 1040 |
+
]
|
| 1041 |
+
|
| 1042 |
+
# Get predictions from each agent
|
| 1043 |
+
agent_predictions = []
|
| 1044 |
+
agent_probas = []
|
| 1045 |
+
|
| 1046 |
+
for i, agent in enumerate(self.agents):
|
| 1047 |
+
pred = agent.predict(X_list[i])[0]
|
| 1048 |
+
proba = agent.predict_proba(X_list[i])[0]
|
| 1049 |
+
agent_predictions.append(pred)
|
| 1050 |
+
agent_probas.append(proba)
|
| 1051 |
+
|
| 1052 |
+
# Get ensemble prediction
|
| 1053 |
+
ensemble_pred = self.coordinator.predict_stacking(X_list)[0]
|
| 1054 |
+
ensemble_proba = self.coordinator.predict_proba_stacking(X_list)[0]
|
| 1055 |
+
|
| 1056 |
+
# Get top 3 predictions
|
| 1057 |
+
top_3_indices = np.argsort(ensemble_proba)[-3:][::-1]
|
| 1058 |
+
top_3_categories = [self.categories[i] for i in top_3_indices]
|
| 1059 |
+
top_3_scores = [ensemble_proba[i] for i in top_3_indices]
|
| 1060 |
+
|
| 1061 |
+
result = {
|
| 1062 |
+
'predicted_category': self.categories[ensemble_pred],
|
| 1063 |
+
'confidence': float(ensemble_proba[ensemble_pred]),
|
| 1064 |
+
'top_3_predictions': [
|
| 1065 |
+
{'category': cat, 'confidence': float(score)}
|
| 1066 |
+
for cat, score in zip(top_3_categories, top_3_scores)
|
| 1067 |
+
],
|
| 1068 |
+
'agent_votes': {
|
| 1069 |
+
agent.name: self.categories[pred]
|
| 1070 |
+
for agent, pred in zip(self.agents, agent_predictions)
|
| 1071 |
+
},
|
| 1072 |
+
'ensemble_method': 'Stacking'
|
| 1073 |
+
}
|
| 1074 |
+
|
| 1075 |
+
return result
|
| 1076 |
+
|
| 1077 |
+
# Visualization functions
|
| 1078 |
+
def create_performance_comparison(results: Dict) -> go.Figure:
|
| 1079 |
+
"""Create performance comparison visualization."""
|
| 1080 |
+
models = list(results.keys())
|
| 1081 |
+
metrics = ['accuracy', 'f1_weighted', 'precision_weighted', 'recall_weighted']
|
| 1082 |
+
|
| 1083 |
+
fig = go.Figure()
|
| 1084 |
+
|
| 1085 |
+
for metric in metrics:
|
| 1086 |
+
values = [results[model][metric] for model in models]
|
| 1087 |
+
fig.add_trace(go.Bar(
|
| 1088 |
+
name=metric.replace('_', ' ').title(),
|
| 1089 |
+
x=models,
|
| 1090 |
+
y=values,
|
| 1091 |
+
text=[f'{v:.3f}' for v in values],
|
| 1092 |
+
textposition='auto'
|
| 1093 |
+
))
|
| 1094 |
+
|
| 1095 |
+
fig.update_layout(
|
| 1096 |
+
title='Model Performance Comparison on Test Set',
|
| 1097 |
+
xaxis_title='Model',
|
| 1098 |
+
yaxis_title='Score',
|
| 1099 |
+
barmode='group',
|
| 1100 |
+
height=500,
|
| 1101 |
+
showlegend=True,
|
| 1102 |
+
yaxis=dict(range=[0, 1])
|
| 1103 |
+
)
|
| 1104 |
+
|
| 1105 |
+
return fig
|
| 1106 |
+
|
| 1107 |
+
def create_confusion_matrix(y_true: np.ndarray, y_pred: np.ndarray,
|
| 1108 |
+
categories: List[str]) -> go.Figure:
|
| 1109 |
+
"""Create confusion matrix visualization."""
|
| 1110 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 1111 |
+
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
| 1112 |
+
|
| 1113 |
+
fig = go.Figure(data=go.Heatmap(
|
| 1114 |
+
z=cm_normalized,
|
| 1115 |
+
x=categories,
|
| 1116 |
+
y=categories,
|
| 1117 |
+
colorscale='Blues',
|
| 1118 |
+
text=cm,
|
| 1119 |
+
texttemplate='%{text}',
|
| 1120 |
+
textfont={"size": 8},
|
| 1121 |
+
colorbar=dict(title="Normalized Count")
|
| 1122 |
+
))
|
| 1123 |
+
|
| 1124 |
+
fig.update_layout(
|
| 1125 |
+
title='Confusion Matrix (Stacking Ensemble)',
|
| 1126 |
+
xaxis_title='Predicted Category',
|
| 1127 |
+
yaxis_title='True Category',
|
| 1128 |
+
height=800,
|
| 1129 |
+
width=900
|
| 1130 |
+
)
|
| 1131 |
+
|
| 1132 |
+
return fig
|
| 1133 |
+
|
| 1134 |
+
# Gradio interface
|
| 1135 |
+
def create_gradio_interface(system: MultiAgentSystem, training_results: Dict):
|
| 1136 |
+
"""Create Gradio interface for the system."""
|
| 1137 |
+
|
| 1138 |
+
def predict_text(text):
|
| 1139 |
+
"""Prediction function for Gradio."""
|
| 1140 |
+
if not text or len(text.strip()) == 0:
|
| 1141 |
+
return "Please enter some text to classify.", None, None
|
| 1142 |
+
|
| 1143 |
+
try:
|
| 1144 |
+
result = system.predict_single(text)
|
| 1145 |
+
|
| 1146 |
+
# Format output
|
| 1147 |
+
output_text = f"""
|
| 1148 |
+
**Predicted Category:** {result['predicted_category']}
|
| 1149 |
+
**Confidence:** {result['confidence']:.2%}
|
| 1150 |
+
|
| 1151 |
+
**Top 3 Predictions:**
|
| 1152 |
+
"""
|
| 1153 |
+
for pred in result['top_3_predictions']:
|
| 1154 |
+
output_text += f"- {pred['category']}: {pred['confidence']:.2%}\n"
|
| 1155 |
+
|
| 1156 |
+
output_text += "\n**Agent Votes:**\n"
|
| 1157 |
+
for agent_name, vote in result['agent_votes'].items():
|
| 1158 |
+
output_text += f"- {agent_name}: {vote}\n"
|
| 1159 |
+
|
| 1160 |
+
output_text += f"\n**Ensemble Method:** {result['ensemble_method']}"
|
| 1161 |
+
|
| 1162 |
+
# Create confidence bar chart
|
| 1163 |
+
categories = [p['category'] for p in result['top_3_predictions']]
|
| 1164 |
+
confidences = [p['confidence'] for p in result['top_3_predictions']]
|
| 1165 |
+
|
| 1166 |
+
fig = go.Figure(data=[
|
| 1167 |
+
go.Bar(x=categories, y=confidences, text=[f'{c:.2%}' for c in confidences],
|
| 1168 |
+
textposition='auto')
|
| 1169 |
+
])
|
| 1170 |
+
fig.update_layout(
|
| 1171 |
+
title='Top 3 Prediction Confidences',
|
| 1172 |
+
xaxis_title='Category',
|
| 1173 |
+
yaxis_title='Confidence',
|
| 1174 |
+
yaxis=dict(range=[0, 1]),
|
| 1175 |
+
height=400
|
| 1176 |
+
)
|
| 1177 |
+
|
| 1178 |
+
return output_text, fig, None
|
| 1179 |
+
|
| 1180 |
+
except Exception as e:
|
| 1181 |
+
return f"Error making prediction: {str(e)}", None, None
|
| 1182 |
+
|
| 1183 |
+
# Create performance visualizations
|
| 1184 |
+
perf_fig = create_performance_comparison(training_results['test_results'])
|
| 1185 |
+
cm_fig = create_confusion_matrix(
|
| 1186 |
+
training_results['true_labels'],
|
| 1187 |
+
training_results['predictions'],
|
| 1188 |
+
system.categories
|
| 1189 |
+
)
|
| 1190 |
+
|
| 1191 |
+
# Example texts
|
| 1192 |
+
examples = [
|
| 1193 |
+
"The new graphics card delivers excellent performance for gaming with ray tracing enabled.",
|
| 1194 |
+
"The patient showed improvement after the medication was administered.",
|
| 1195 |
+
"The stock market experienced significant volatility due to economic uncertainty.",
|
| 1196 |
+
"The team scored a last-minute goal to win the championship.",
|
| 1197 |
+
"Scientists discovered a new species in the Amazon rainforest."
|
| 1198 |
+
]
|
| 1199 |
+
|
| 1200 |
+
# Create interface
|
| 1201 |
+
with gr.Blocks(title="Multi-Agent Document Classification System", theme=gr.themes.Soft()) as interface:
|
| 1202 |
+
gr.Markdown("""
|
| 1203 |
+
# Multi-Agent AI Collaboration System for Document Classification
|
| 1204 |
+
## Author: Spencer Purdy
|
| 1205 |
+
|
| 1206 |
+
This system uses multiple specialized machine learning models (agents) that collaborate
|
| 1207 |
+
to classify documents into 20 different categories from the newsgroups dataset.
|
| 1208 |
+
|
| 1209 |
+
### System Architecture:
|
| 1210 |
+
- **TF-IDF Agent**: Specializes in statistical text features using Logistic Regression
|
| 1211 |
+
- **Embedding Agent**: Captures semantic meaning using neural networks and sentence embeddings
|
| 1212 |
+
- **XGBoost Agent**: Handles mixed features with gradient boosting
|
| 1213 |
+
- **Ensemble Coordinator**: Combines agent predictions using stacking for optimal performance
|
| 1214 |
+
|
| 1215 |
+
### Dataset:
|
| 1216 |
+
- 20 Newsgroups dataset (publicly available, approx. 18,000 documents)
|
| 1217 |
+
- 20 categories covering various topics (technology, sports, politics, etc.)
|
| 1218 |
+
""")
|
| 1219 |
+
|
| 1220 |
+
with gr.Tab("Document Classification"):
|
| 1221 |
+
gr.Markdown("### Enter text to classify:")
|
| 1222 |
+
|
| 1223 |
+
with gr.Row():
|
| 1224 |
+
with gr.Column(scale=2):
|
| 1225 |
+
text_input = gr.Textbox(
|
| 1226 |
+
label="Input Text",
|
| 1227 |
+
placeholder="Enter document text here...",
|
| 1228 |
+
lines=10
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
classify_btn = gr.Button("Classify Document", variant="primary")
|
| 1232 |
+
|
| 1233 |
+
gr.Examples(
|
| 1234 |
+
examples=examples,
|
| 1235 |
+
inputs=text_input,
|
| 1236 |
+
label="Example Documents"
|
| 1237 |
+
)
|
| 1238 |
+
|
| 1239 |
+
with gr.Column(scale=1):
|
| 1240 |
+
output_text = gr.Markdown(label="Prediction Results")
|
| 1241 |
+
confidence_plot = gr.Plot(label="Confidence Scores")
|
| 1242 |
+
|
| 1243 |
+
classify_btn.click(
|
| 1244 |
+
fn=predict_text,
|
| 1245 |
+
inputs=[text_input],
|
| 1246 |
+
outputs=[output_text, confidence_plot, gr.Textbox(visible=False)]
|
| 1247 |
+
)
|
| 1248 |
+
|
| 1249 |
+
with gr.Tab("System Performance"):
|
| 1250 |
+
gr.Markdown("""
|
| 1251 |
+
### Model Performance on Test Set
|
| 1252 |
+
|
| 1253 |
+
The system was evaluated on a held-out test set. Below are the performance metrics
|
| 1254 |
+
for individual agents and ensemble methods.
|
| 1255 |
+
""")
|
| 1256 |
+
|
| 1257 |
+
gr.Plot(value=perf_fig, label="Performance Comparison")
|
| 1258 |
+
|
| 1259 |
+
gr.Markdown("""
|
| 1260 |
+
### Performance Summary:
|
| 1261 |
+
|
| 1262 |
+
Individual agents show good performance, with each specializing in different aspects:
|
| 1263 |
+
- TF-IDF Agent: Fast, interpretable, good with keyword-based classification
|
| 1264 |
+
- Embedding Agent: Captures semantic similarity, handles paraphrasing well
|
| 1265 |
+
- XGBoost Agent: Robust with mixed features, handles complex patterns
|
| 1266 |
+
|
| 1267 |
+
Ensemble methods combine agent strengths:
|
| 1268 |
+
- Weighted Voting: Simple combination based on validation performance
|
| 1269 |
+
- Stacking: Meta-learner optimally combines agent predictions
|
| 1270 |
+
|
| 1271 |
+
The stacking ensemble typically achieves the best performance by learning
|
| 1272 |
+
how to weight each agent for different types of documents.
|
| 1273 |
+
""")
|
| 1274 |
+
|
| 1275 |
+
with gr.Tab("Confusion Matrix"):
|
| 1276 |
+
gr.Markdown("""
|
| 1277 |
+
### Confusion Matrix
|
| 1278 |
+
|
| 1279 |
+
Shows where the stacking ensemble makes correct and incorrect predictions.
|
| 1280 |
+
Darker colors indicate more predictions in that cell.
|
| 1281 |
+
""")
|
| 1282 |
+
|
| 1283 |
+
gr.Plot(value=cm_fig, label="Confusion Matrix")
|
| 1284 |
+
|
| 1285 |
+
with gr.Tab("Model Information"):
|
| 1286 |
+
gr.Markdown(f"""
|
| 1287 |
+
### System Information
|
| 1288 |
+
|
| 1289 |
+
**Training Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
| 1290 |
+
|
| 1291 |
+
**Configuration:**
|
| 1292 |
+
- Random Seed: {config.random_seed}
|
| 1293 |
+
- Training Set Size: {len(system.train_df)} documents
|
| 1294 |
+
- Validation Set Size: {len(system.val_df)} documents
|
| 1295 |
+
- Test Set Size: {len(system.test_df)} documents
|
| 1296 |
+
- Number of Categories: {len(system.categories)}
|
| 1297 |
+
|
| 1298 |
+
**Categories:**
|
| 1299 |
+
{', '.join(system.categories)}
|
| 1300 |
+
|
| 1301 |
+
**Agent Training Times:**
|
| 1302 |
+
""")
|
| 1303 |
+
|
| 1304 |
+
metrics_df = pd.DataFrame([
|
| 1305 |
+
{
|
| 1306 |
+
'Agent': 'TF-IDF Agent',
|
| 1307 |
+
'Training Time (s)': f"{training_results['agent_metrics'][0]['training_time']:.2f}",
|
| 1308 |
+
'Validation Accuracy': f"{training_results['agent_metrics'][0]['accuracy']:.4f}",
|
| 1309 |
+
'Validation F1': f"{training_results['agent_metrics'][0]['f1_weighted']:.4f}"
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
'Agent': 'Embedding Agent',
|
| 1313 |
+
'Training Time (s)': f"{training_results['agent_metrics'][1]['training_time']:.2f}",
|
| 1314 |
+
'Validation Accuracy': f"{training_results['agent_metrics'][1]['accuracy']:.4f}",
|
| 1315 |
+
'Validation F1': f"{training_results['agent_metrics'][1]['f1_weighted']:.4f}"
|
| 1316 |
+
},
|
| 1317 |
+
{
|
| 1318 |
+
'Agent': 'XGBoost Agent',
|
| 1319 |
+
'Training Time (s)': f"{training_results['agent_metrics'][2]['training_time']:.2f}",
|
| 1320 |
+
'Validation Accuracy': f"{training_results['agent_metrics'][2]['accuracy']:.4f}",
|
| 1321 |
+
'Validation F1': f"{training_results['agent_metrics'][2]['f1_weighted']:.4f}"
|
| 1322 |
+
}
|
| 1323 |
+
])
|
| 1324 |
+
|
| 1325 |
+
gr.DataFrame(value=metrics_df, label="Agent Training Metrics")
|
| 1326 |
+
|
| 1327 |
+
gr.Markdown("""
|
| 1328 |
+
### Model Limitations and Failure Cases
|
| 1329 |
+
|
| 1330 |
+
**Known Limitations:**
|
| 1331 |
+
1. **Domain Specificity**: Trained on newsgroup data, may not generalize well to
|
| 1332 |
+
significantly different domains (e.g., legal documents, medical reports)
|
| 1333 |
+
2. **Short Text**: Performance may degrade on very short documents (< 50 words)
|
| 1334 |
+
3. **Ambiguous Content**: Documents covering multiple topics may be misclassified
|
| 1335 |
+
4. **Training Data Bias**: Performance reflects biases present in training data
|
| 1336 |
+
5. **Language**: Only trained on English text
|
| 1337 |
+
|
| 1338 |
+
**Expected Failure Cases:**
|
| 1339 |
+
- Documents mixing multiple topics from different categories
|
| 1340 |
+
- Highly technical jargon not present in training data
|
| 1341 |
+
- Sarcasm, irony, or implicit meaning
|
| 1342 |
+
- Very long documents (> 10,000 words) may lose context
|
| 1343 |
+
- Non-English text or code-switched content
|
| 1344 |
+
|
| 1345 |
+
**Uncertainty Indicators:**
|
| 1346 |
+
- Confidence < 50%: Prediction is highly uncertain, consider human review
|
| 1347 |
+
- Top 2 predictions very close: Document may belong to multiple categories
|
| 1348 |
+
- Agent votes disagree significantly: Complex or ambiguous document
|
| 1349 |
+
|
| 1350 |
+
### Ethical Considerations
|
| 1351 |
+
|
| 1352 |
+
This system should be used responsibly:
|
| 1353 |
+
- Not suitable for high-stakes decisions without human oversight
|
| 1354 |
+
- May perpetuate biases present in training data
|
| 1355 |
+
- Should be regularly monitored and updated with new data
|
| 1356 |
+
- Users should verify important predictions
|
| 1357 |
+
|
| 1358 |
+
### Technical Details
|
| 1359 |
+
|
| 1360 |
+
**Feature Engineering:**
|
| 1361 |
+
- TF-IDF: 5000 features, bigrams, sublinear TF scaling
|
| 1362 |
+
- Embeddings: 384-dimensional sentence-transformers (all-MiniLM-L6-v2)
|
| 1363 |
+
- Metadata: Document length, word count, average word length
|
| 1364 |
+
|
| 1365 |
+
**Model Architectures:**
|
| 1366 |
+
- TF-IDF Agent: Logistic Regression (L2 regularization)
|
| 1367 |
+
- Embedding Agent: 2-layer neural network (384 -> 256 -> 128 -> 20)
|
| 1368 |
+
- XGBoost Agent: 200 estimators, max depth 6, learning rate 0.1
|
| 1369 |
+
- Meta-learner: Logistic Regression on stacked predictions
|
| 1370 |
+
|
| 1371 |
+
**Reproducibility:**
|
| 1372 |
+
All random seeds are set to {config.random_seed} for reproducibility.
|
| 1373 |
+
Training on the same data with same configuration should yield very similar results.
|
| 1374 |
+
""")
|
| 1375 |
+
|
| 1376 |
+
with gr.Tab("About"):
|
| 1377 |
+
gr.Markdown("""
|
| 1378 |
+
### About This System
|
| 1379 |
+
|
| 1380 |
+
**Project:** Multi-Agent AI Collaboration System for Document Classification
|
| 1381 |
+
|
| 1382 |
+
**Author:** Spencer Purdy
|
| 1383 |
+
|
| 1384 |
+
**Purpose:** Demonstrate genuine multi-model machine learning collaboration
|
| 1385 |
+
for document classification and routing.
|
| 1386 |
+
|
| 1387 |
+
**Real-World Applications:**
|
| 1388 |
+
- Customer support ticket routing
|
| 1389 |
+
- Email categorization
|
| 1390 |
+
- Content moderation
|
| 1391 |
+
- Document management systems
|
| 1392 |
+
- News article classification
|
| 1393 |
+
|
| 1394 |
+
**Dataset:**
|
| 1395 |
+
- 20 Newsgroups dataset
|
| 1396 |
+
- Publicly available via scikit-learn
|
| 1397 |
+
- Approximately 18,000 newsgroup posts
|
| 1398 |
+
- 20 categories covering diverse topics
|
| 1399 |
+
- No personal or sensitive information
|
| 1400 |
+
|
| 1401 |
+
**Technology Stack:**
|
| 1402 |
+
- scikit-learn: Classical ML algorithms and pipelines
|
| 1403 |
+
- PyTorch: Neural network implementation
|
| 1404 |
+
- sentence-transformers: Semantic embeddings
|
| 1405 |
+
- XGBoost: Gradient boosting
|
| 1406 |
+
- Gradio: User interface
|
| 1407 |
+
|
| 1408 |
+
**Development:**
|
| 1409 |
+
- Developed and tested in Google Colab
|
| 1410 |
+
- Can be deployed to Hugging Face Spaces
|
| 1411 |
+
- All dependencies explicitly versioned
|
| 1412 |
+
- Code is documented and follows best practices
|
| 1413 |
+
|
| 1414 |
+
**License:**
|
| 1415 |
+
- Code: MIT License
|
| 1416 |
+
- Dataset: Public domain (20 Newsgroups)
|
| 1417 |
+
|
| 1418 |
+
**Contact:**
|
| 1419 |
+
For questions or issues, please contact Spencer Purdy.
|
| 1420 |
+
|
| 1421 |
+
**Acknowledgments:**
|
| 1422 |
+
- 20 Newsgroups dataset creators
|
| 1423 |
+
- scikit-learn team
|
| 1424 |
+
- Hugging Face for sentence-transformers
|
| 1425 |
+
- Open source ML community
|
| 1426 |
+
""")
|
| 1427 |
+
|
| 1428 |
+
return interface
|
| 1429 |
+
|
| 1430 |
+
# Main execution
|
| 1431 |
+
if __name__ == "__main__":
|
| 1432 |
+
logger.info("=" * 70)
|
| 1433 |
+
logger.info("Multi-Agent AI Collaboration System")
|
| 1434 |
+
logger.info("Author: Spencer Purdy")
|
| 1435 |
+
logger.info("=" * 70)
|
| 1436 |
+
logger.info(f"Random seed: {RANDOM_SEED}")
|
| 1437 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
| 1438 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 1439 |
+
if torch.cuda.is_available():
|
| 1440 |
+
logger.info(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
| 1441 |
+
|
| 1442 |
+
# Initialize system
|
| 1443 |
+
logger.info("\nInitializing system...")
|
| 1444 |
+
system = MultiAgentSystem(config)
|
| 1445 |
+
|
| 1446 |
+
# Train system
|
| 1447 |
+
logger.info("\nStarting training process...")
|
| 1448 |
+
training_results = system.train_full_system()
|
| 1449 |
+
|
| 1450 |
+
# Create and launch interface
|
| 1451 |
+
logger.info("\nCreating Gradio interface...")
|
| 1452 |
+
interface = create_gradio_interface(system, training_results)
|
| 1453 |
+
|
| 1454 |
+
logger.info("\nLaunching interface...")
|
| 1455 |
+
interface.launch(
|
| 1456 |
+
share=True,
|
| 1457 |
+
server_name="0.0.0.0",
|
| 1458 |
+
server_port=7860,
|
| 1459 |
+
show_error=True
|
| 1460 |
+
)
|