Spaces:
Sleeping
Sleeping
File size: 26,960 Bytes
dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 7b9bb80 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 6344100 dfafaa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import datetime as dt
import random
from pathlib import Path
import os
import hashlib
import requests
import json
import tempfile
import numpy as np
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
import torchvision.transforms as T
from PIL import Image
from torchcam.methods import GradCAM, GradCAMpp
from torchcam.utils import overlay_mask
from torchvision.datasets import CIFAR10, MNIST, FashionMNIST
# Global state for model and configuration
app_state = {
"model": None,
"classes": None,
"meta": None,
"transform": None,
"target_layer": None,
"dataset": None,
"dataset_classes": None
}
custom_theme = gr.themes.Soft(
primary_hue="green", # main brand color
secondary_hue="green", # accent color
neutral_hue="slate" # backgrounds/borders/text neutrals
)
def download_release_asset(url: str, dest_dir: str = "saved_checkpoints") -> str:
"""Download a remote checkpoint to dest_dir and return its local path."""
Path(dest_dir).mkdir(parents=True, exist_ok=True)
url_hash = hashlib.sha256(url.encode("utf-8")).hexdigest()[:16]
fname = Path(url).name or f"asset_{url_hash}.ckpt"
if not fname.endswith(".ckpt"):
fname = f"{fname}.ckpt"
local_path = Path(dest_dir) / f"{url_hash}_{fname}"
if local_path.exists() and local_path.stat().st_size > 0:
return str(local_path)
with requests.get(url, stream=True, timeout=120) as r:
r.raise_for_status()
with open(local_path, "wb") as f:
for chunk in r.iter_content(chunk_size=1024 * 1024):
if chunk:
f.write(chunk)
return str(local_path)
def load_release_presets() -> dict:
"""Load release preset URLs from multiple sources."""
# Try environment variable containing JSON mapping
env_json = os.environ.get("RELEASE_CKPTS_JSON", "").strip()
if env_json:
try:
data = json.loads(env_json)
if isinstance(data, dict):
return dict(data)
except Exception:
pass
# Try local JSON files for dev
for rel in (".streamlit/presets.json", "presets.json"):
p = Path(rel)
if p.exists():
try:
with open(p, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict) and data:
if "release_checkpoints" in data and isinstance(data["release_checkpoints"], dict):
return dict(data["release_checkpoints"])
return dict(data)
except Exception:
pass
return {}
def get_device(choice="auto"):
if choice == "cpu":
return "cpu"
if choice == "cuda":
return "cuda"
return "cuda" if torch.cuda.is_available() else "cpu"
def denorm_to_pil(x, mean, std):
"""Convert normalized tensor to PIL Image."""
x = x.detach().cpu().clone()
if len(mean) == 1:
# grayscale
m, s = float(mean[0]), float(std[0])
x = x * s + m
x = x.clamp(0, 1)
pil = T.ToPILImage()(x)
pil = pil.convert("RGB")
return pil
else:
mean = torch.tensor(mean)[:, None, None]
std = torch.tensor(std)[:, None, None]
x = x * std + mean
x = x.clamp(0, 1)
return T.ToPILImage()(x)
DATASET_CLASSES = {
"fashion-mnist": [
"T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot",
],
"mnist": [str(i) for i in range(10)],
"cifar10": [
"airplane", "automobile", "bird", "cat", "deer",
"dog", "frog", "horse", "ship", "truck",
],
}
def load_raw_dataset(name: str, root="data"):
"""Load the test split with ToTensor() only (for preview)."""
tt = T.ToTensor()
if name == "fashion-mnist":
ds = FashionMNIST(root=root, train=False, download=True, transform=tt)
elif name == "mnist":
ds = MNIST(root=root, train=False, download=True, transform=tt)
elif name == "cifar10":
ds = CIFAR10(root=root, train=False, download=True, transform=tt)
else:
raise ValueError(f"Unknown dataset: {name}")
classes = getattr(ds, "classes", None) or [str(i) for i in range(10)]
return ds, classes
def pil_from_tensor(img_tensor, grayscale_to_rgb=True):
pil = T.ToPILImage()(img_tensor)
if grayscale_to_rgb and img_tensor.ndim == 3 and img_tensor.shape[0] == 1:
pil = pil.convert("RGB")
return pil
class SmallCNN(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc = nn.Linear(64 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = torch.flatten(x, 1)
return self.fc(x)
def load_model_from_ckpt(ckpt_path: Path, device: str):
ckpt = torch.load(str(ckpt_path), map_location=device)
classes = ckpt.get("classes", None)
meta = ckpt.get("meta", {})
num_classes = len(classes) if classes else 10
model_name = meta.get("model_name", "smallcnn")
if model_name == "smallcnn":
model = SmallCNN(num_classes=num_classes).to(device)
default_target_layer = "conv2"
elif model_name == "resnet18_cifar":
m = tvm.resnet18(weights=None)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
m.fc = nn.Linear(m.fc.in_features, num_classes)
model = m.to(device)
default_target_layer = "layer4"
elif model_name == "resnet18_imagenet":
try:
w = tvm.ResNet18_Weights.IMAGENET1K_V1
except Exception:
w = None
m = tvm.resnet18(weights=w)
m.fc = nn.Linear(m.fc.in_features, num_classes)
model = m.to(device)
default_target_layer = "layer4"
else:
raise ValueError(f"Unknown model_name in ckpt: {model_name}")
model.load_state_dict(ckpt["model_state"])
model.eval()
meta.setdefault("default_target_layer", default_target_layer)
return model, classes, meta
def build_transform_from_meta(meta):
img_size = int(meta.get("img_size", 28))
mean = meta.get("mean", [0.2860])
std = meta.get("std", [0.3530])
if len(mean) == 1:
return T.Compose([
T.Grayscale(num_output_channels=1),
T.Resize((img_size, img_size)),
T.ToTensor(),
T.Normalize(mean, std),
])
else:
return T.Compose([
T.Resize((img_size, img_size)),
T.ToTensor(),
T.Normalize(mean, std),
])
def predict_and_cam(model, x, device, target_layer, topk=3, method="Grad-CAM"):
"""Predict and generate CAM for top-k classes."""
cam_cls = GradCAM if method == "Grad-CAM" else GradCAMpp
cam_extractor = cam_cls(model, target_layer=target_layer)
logits = model(x.to(device))
probs = torch.softmax(logits, dim=1)[0].detach().cpu()
top_vals, top_idxs = probs.topk(topk)
results = []
for rank, (p, idx) in enumerate(zip(top_vals.tolist(), top_idxs.tolist())):
retain = rank < topk - 1
cams = cam_extractor(idx, logits, retain_graph=retain)
cam = cams[0].detach().cpu()
results.append({
"rank": rank + 1,
"class_index": int(idx),
"prob": float(p),
"cam": cam
})
return results, probs
def overlay_pil(base_pil_rgb: Image.Image, cam_tensor, alpha=0.5):
"""Create overlay of CAM on base image."""
cam = cam_tensor.clone()
cam -= cam.min()
cam = cam / (cam.max() + 1e-8)
heat = T.ToPILImage()(cam)
return overlay_mask(base_pil_rgb, heat, alpha=alpha)
# Gradio interface functions
def load_checkpoint_from_url(url, preset_name):
"""Load checkpoint from URL or preset."""
presets = load_release_presets()
if preset_name and preset_name != "None":
url = presets.get(preset_name, "")
if not url:
return "β No URL provided", "", ""
try:
ckpt_path = download_release_asset(url)
device = get_device("cpu")
model, classes, meta = load_model_from_ckpt(Path(ckpt_path), device)
# Update global state
app_state["model"] = model
app_state["classes"] = classes
app_state["meta"] = meta
app_state["transform"] = build_transform_from_meta(meta)
app_state["target_layer"] = meta.get("default_target_layer", "conv2")
# Load dataset for samples
ds_name = meta.get("dataset", "fashion-mnist")
try:
dataset, dataset_classes = load_raw_dataset(ds_name)
app_state["dataset"] = dataset
app_state["dataset_classes"] = dataset_classes
except:
app_state["dataset"] = None
app_state["dataset_classes"] = None
meta_info = {
"dataset": meta.get("dataset"),
"model_name": meta.get("model_name"),
"img_size": meta.get("img_size"),
"target_layer": app_state["target_layer"],
"mean": meta.get("mean"),
"std": meta.get("std"),
"classes": len(classes) if classes else "N/A"
}
# Create class choices for filter
class_choices = ["(any)"] + (dataset_classes if app_state["dataset"] else [])
max_samples = len(dataset) - 1 if app_state["dataset"] else 0
return (f"β
Loaded: {ckpt_path}", json.dumps(meta_info, indent=2),
gr.update(visible=True), gr.update(choices=class_choices, value="(any)", visible=True),
gr.update(visible=True, maximum=max_samples, value=0), gr.update(visible=True, value=""))
except Exception as e:
return f"β Failed: {str(e)}", "", gr.update(visible=False), gr.update(choices=["(any)"], value="(any)"), gr.update(visible=False), gr.update(choices=["(any)"], value="(any)"), gr.update(visible=False)
def load_checkpoint_from_file(file):
"""Load checkpoint from uploaded file."""
if file is None:
return "β No file uploaded", "", ""
try:
# Save uploaded file temporarily
Path("saved_checkpoints").mkdir(parents=True, exist_ok=True)
with open(file.name, "rb") as f:
content = f.read()
content_hash = hashlib.sha256(content).hexdigest()[:16]
base_name = Path(file.name).name
if not base_name.endswith(".ckpt"):
base_name = f"{base_name}.ckpt"
local_path = Path("saved_checkpoints") / f"{content_hash}_{base_name}"
with open(local_path, "wb") as f:
f.write(content)
device = get_device("cpu")
model, classes, meta = load_model_from_ckpt(local_path, device)
# Update global state
app_state["model"] = model
app_state["classes"] = classes
app_state["meta"] = meta
app_state["transform"] = build_transform_from_meta(meta)
app_state["target_layer"] = meta.get("default_target_layer", "conv2")
# Load dataset for samples
ds_name = meta.get("dataset", "fashion-mnist")
try:
dataset, dataset_classes = load_raw_dataset(ds_name)
app_state["dataset"] = dataset
app_state["dataset_classes"] = dataset_classes
except:
app_state["dataset"] = None
app_state["dataset_classes"] = None
meta_info = {
"dataset": meta.get("dataset"),
"model_name": meta.get("model_name"),
"img_size": meta.get("img_size"),
"target_layer": app_state["target_layer"],
"mean": meta.get("mean"),
"std": meta.get("std"),
"classes": len(classes) if classes else "N/A"
}
# Create class choices for filter
class_choices = ["(any)"] + (dataset_classes if app_state["dataset"] else [])
max_samples = len(dataset) - 1 if app_state["dataset"] else 0
return (f"β
Loaded: {local_path}", json.dumps(meta_info, indent=2),
gr.update(visible=True), gr.update(choices=class_choices, value="(any)", visible=True),
gr.update(visible=True, maximum=max_samples, value=0), gr.update(visible=True, value=""))
except Exception as e:
return f"β Failed: {str(e)}", "", gr.update(visible=False)
def get_random_sample(class_filter="(any)"):
"""Get a random sample from the (optionally filtered) dataset."""
if app_state["dataset"] is None:
return None, "No dataset loaded", gr.update(visible=False)
dataset = app_state["dataset"]
dataset_classes = app_state["dataset_classes"]
# Build candidate indices according to filter
if class_filter != "(any)":
targets = np.array([dataset[i][1] for i in range(len(dataset))])
class_id = dataset_classes.index(class_filter)
filtered_indices = np.where(targets == class_id)[0]
if len(filtered_indices) == 0:
return None, f"No samples found for class: {class_filter}", gr.update(visible=True, maximum=0, value=0)
actual_idx = int(random.choice(filtered_indices))
# slider index is relative to the filtered list length
slider_max = len(filtered_indices) - 1
slider_value = int(np.where(filtered_indices == actual_idx)[0][0])
else:
actual_idx = random.randint(0, len(dataset) - 1)
slider_max = len(dataset) - 1
slider_value = actual_idx
img_tensor, label = dataset[actual_idx]
sample_img = pil_from_tensor(img_tensor, grayscale_to_rgb=True)
sample_img = double_height(sample_img)
class_name = dataset_classes[label] if dataset_classes else str(label)
caption = f"Sample {actual_idx} from {app_state['meta'].get('dataset', 'dataset')} β’ class: {class_name}"
# Update slider to the picked index inside the current filter's range
return sample_img, caption, gr.update(visible=True, maximum=slider_max, value=slider_value)
def get_sample_by_index(idx, class_filter):
"""Get a specific sample by index with optional class filtering."""
if app_state["dataset"] is None:
return None, "No dataset loaded"
dataset = app_state["dataset"]
dataset_classes = app_state["dataset_classes"]
# Apply class filter
if class_filter != "(any)":
targets = np.array([dataset[i][1] for i in range(len(dataset))])
class_id = dataset_classes.index(class_filter)
filtered_indices = np.where(targets == class_id)[0]
if len(filtered_indices) == 0:
return None, f"No samples found for class: {class_filter}"
# Clamp index to filtered range
idx = max(0, min(idx, len(filtered_indices) - 1))
actual_idx = filtered_indices[idx]
else:
# Clamp index to dataset range
idx = max(0, min(idx, len(dataset) - 1))
actual_idx = idx
img_tensor, label = dataset[actual_idx]
sample_img = pil_from_tensor(img_tensor, grayscale_to_rgb=True)
sample_img = double_height(sample_img)
class_name = dataset_classes[label] if dataset_classes else str(label)
caption = f"Sample {actual_idx} from {app_state['meta'].get('dataset', 'dataset')} β’ class: {class_name}"
return sample_img, caption
def update_class_filter(class_filter):
"""Update the slider range when class filter changes."""
if app_state["dataset"] is None:
return gr.update(visible=False, maximum=0, value=0)
dataset = app_state["dataset"]
dataset_classes = app_state["dataset_classes"]
if class_filter == "(any)":
max_idx = len(dataset) - 1
else:
targets = np.array([dataset[i][1] for i in range(len(dataset))])
class_id = dataset_classes.index(class_filter)
filtered_indices = np.where(targets == class_id)[0]
max_idx = len(filtered_indices) - 1 if len(filtered_indices) > 0 else 0
return gr.update(visible=True, maximum=max_idx, value=0)
def double_height(img: Image.Image) -> Image.Image:
"""Return a copy of the image with doubled height."""
w, h = img.size
return img.resize((w * 10, h * 10), Image.Resampling.NEAREST)
def process_image(image, method, topk, alpha):
"""Process image and generate Grad-CAM visualizations."""
if app_state["model"] is None:
return "β No model loaded", [], []
if image is None:
return "β No image provided", [], []
try:
# Convert to PIL if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Prepare image
pil = image.convert("RGB")
x = app_state["transform"](pil)
x_batched = x.unsqueeze(0)
# Generate base image for overlay
base_pil = denorm_to_pil(
x,
app_state["meta"].get("mean", [0.2860]),
app_state["meta"].get("std", [0.3530])
)
# Run prediction and CAM
device = get_device("cpu")
cam_results, probs = predict_and_cam(
app_state["model"], x_batched, device,
app_state["target_layer"], topk=topk, method=method
)
# Create predictions table
predictions = []
for r in cam_results:
class_name = app_state["classes"][r["class_index"]] if app_state["classes"] else str(r["class_index"])
predictions.append([
r["rank"],
class_name,
r["class_index"],
f"{r['prob']:.4f}"
])
# Create overlay images
overlays = []
for r in cam_results:
class_name = app_state["classes"][r["class_index"]] if app_state["classes"] else str(r["class_index"])
overlay_img = overlay_pil(base_pil, r["cam"], alpha=alpha)
overlays.append((overlay_img, f"Top{r['rank']}: {class_name} ({r['prob']:.3f})"))
return "β
Processing complete", predictions, overlays
except Exception as e:
return f"β Processing failed: {str(e)}", [], []
# Create Gradio interface
def create_interface():
presets = load_release_presets()
preset_choices = ["None"] + list(presets.keys()) if presets else ["None"]
with gr.Blocks(css="""
.alert {
padding: 10px 15px;
background-color: #FFF3CD;
color: #856404;
border: 1px solid #FFEEBA;
border-radius: 6px;
position: relative;
text-color: #856404;
}
""", theme=custom_theme) as demo:
gr.Markdown("# π Grad-CAM Demo β Upload an image, get top-k predictions + heatmaps")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Settings")
# Checkpoint loading
gr.Markdown("### Load Checkpoint")
with gr.Group():
preset_dropdown = gr.Dropdown(
choices=preset_choices,
value="None",
label="Preset (GitHub Releases)"
)
url_input = gr.Textbox(
label="Or paste asset URL",
placeholder="https://github.com/user/repo/releases/download/..."
)
url_button = gr.Button("Download from URL", variant="primary")
with gr.Group():
file_input = gr.File(
label="Upload checkpoint (.ckpt)",
file_types=[".ckpt"]
)
file_button = gr.Button("Load uploaded file", variant="primary")
status_text = gr.Textbox(
label="Status",
interactive=False,
value="No checkpoint loaded"
)
meta_display = gr.Code(
label="Model Metadata",
language="json",
interactive=False
)
# Processing options
gr.Markdown("### Processing Options")
method_radio = gr.Radio(
choices=["Grad-CAM", "Grad-CAM++"],
value="Grad-CAM",
label="CAM Method"
)
topk_slider = gr.Slider(
minimum=1, maximum=10, value=3, step=1,
label="Top-k classes"
)
alpha_slider = gr.Slider(
minimum=0.1, maximum=0.9, value=0.5, step=0.05,
label="Overlay alpha"
)
with gr.Column(scale=2):
gr.Markdown("## Image Input")
gr.HTML(
"""
<style>
.close-toggle {
/* Hide the checkbox itself */
position: absolute;
opacity: 0;
pointer-events: none;
}
/* When checked, hide the alert */
.close-toggle:checked + .alert {
display: none;
}
.alert {
position: relative;
padding: 12px 40px 12px 12px;
background: #fff3cd; /* pale yellow */
color: #664d03;
border: 1px solid #ffe69c;
border-radius: 8px;
font-family: system-ui, sans-serif;
}
.alert .close {
position: absolute;
top: 6px;
right: 10px;
font-size: 20px;
font-weight: bold;
color: #664d03;
cursor: pointer;
user-select: none;
text-decoration: none;
}
</style>
<input id="alert-close-1" class="close-toggle" type="checkbox">
<div class="alert">
<label for="alert-close-1" class="close" aria-label="Close alert">×</label>
β οΈ Image was resized for better visualization β not equal to dataset original size.
</div>
"""
)
with gr.Group():
image_input = gr.Image(
label="Upload Image",
type="pil",
height=400,
)
with gr.Row():
sample_button = gr.Button("Random Sample", visible=False)
with gr.Group():
gr.Markdown("**Dataset Sample Browser**")
class_filter = gr.Dropdown(
label="Filter by class",
choices=["(any)"],
value="(any)",
visible=False
)
sample_slider = gr.Slider(
label="Sample index",
minimum=0,
maximum=0,
value=0,
step=1,
visible=False,
interactive=True
)
sample_info = gr.Textbox(
label="Sample Info",
interactive=False,
visible=False
)
process_button = gr.Button("π Process Image", variant="primary", size="lg")
process_status = gr.Textbox(
label="Processing Status",
interactive=False
)
gr.Markdown("## Results")
with gr.Group():
gr.Markdown("### Top-k Predictions")
predictions_table = gr.Dataframe(
headers=["Rank", "Class", "Index", "Probability"],
datatype=["number", "str", "number", "str"],
interactive=False
)
with gr.Group():
gr.Markdown("### Grad-CAM Overlays")
overlay_gallery = gr.Gallery(
label="CAM Overlays",
show_label=False,
elem_id="gallery",
columns=3,
object_fit="contain",
height="auto"
)
# Event handlers
url_button.click(
fn=load_checkpoint_from_url,
inputs=[url_input, preset_dropdown],
outputs=[status_text, meta_display, sample_button, class_filter, sample_slider, sample_info]
)
file_button.click(
fn=load_checkpoint_from_file,
inputs=[file_input],
outputs=[status_text, meta_display, sample_button, class_filter, sample_slider, sample_info]
)
sample_button.click(
fn=get_random_sample,
inputs=[class_filter],
outputs=[image_input, sample_info, sample_slider]
)
class_filter.change(
fn=update_class_filter,
inputs=[class_filter],
outputs=[sample_slider]
)
sample_slider.change(
fn=get_sample_by_index,
inputs=[sample_slider, class_filter],
outputs=[image_input, sample_info]
)
process_button.click(
fn=process_image,
inputs=[image_input, method_radio, topk_slider, alpha_slider],
outputs=[process_status, predictions_table, overlay_gallery]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |