File size: 6,735 Bytes
2086543
 
 
f9e337d
 
2086543
f9e337d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca09cf3
f9e337d
ca09cf3
 
 
 
 
 
2086543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ae907
 
2086543
a0ae907
2086543
 
a0ae907
ca09cf3
a0ae907
2086543
a0ae907
 
 
2086543
a0ae907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086543
 
 
 
 
 
 
a0ae907
2086543
a0ae907
2086543
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e337d
 
 
 
 
 
 
 
 
 
 
2086543
 
 
 
 
 
 
a0ae907
 
 
 
2086543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca09cf3
 
 
 
 
 
f9e337d
2086543
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import json
import datetime
import gradio as gr
import pandas as pd
import numpy as np

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)

# SAGE specific imports - use populate module to avoid transformers dependency
try:
    from src.populate import process_sage_results_for_leaderboard, get_sage_leaderboard_df
    SAGE_MODULES_AVAILABLE = process_sage_results_for_leaderboard is not None
    if SAGE_MODULES_AVAILABLE:
        print("βœ… SAGE modules loaded successfully")
    else:
        print("❌ SAGE modules not available")
except ImportError as e:
    print(f"Warning: SAGE modules not available: {e}")
    SAGE_MODULES_AVAILABLE = False


# Configuration
TOKEN = os.environ.get("HF_TOKEN", None)
OWNER = "opencompass"

def format_error(msg):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"

def format_warning(msg):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"

def format_log(msg):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"

def model_hyperlink(link, model_name):
    if link and link.startswith("http"):
        return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
    return model_name

def get_leaderboard_dataframe():
    """Generate leaderboard dataframe from SAGE results"""
    print("πŸ”„ Loading SAGE leaderboard data...")
    
    if not SAGE_MODULES_AVAILABLE:
        print("❌ SAGE modules not available")
        return pd.DataFrame()
        
    try:
        sage_results = process_sage_results_for_leaderboard()
        print(f"πŸ“Š Loaded {len(sage_results)} SAGE results")
        
        if not sage_results:
            print("❌ No SAGE results found")
            return pd.DataFrame()
        
        # Convert to leaderboard format
        leaderboard_data = []
        for result in sage_results:
            # Extract model name from submission_id
            if result.submission_id.startswith("initial_"):
                model_name = result.submission_id.split("_", 2)[-1].replace("_", " ")
            else:
                model_name = result.submission_id
            
            # Create model hyperlink (for now just display name)
            model_display = f"**{model_name}**"
            
            row = {
                "Model": model_display,
                "Organization": result.organization,
                "Overall (%)": result.results.get("sage_overall", 0),
                "Mathematics (%)": result.results.get("sage_math", 0),
                "Physics (%)": result.results.get("sage_physics", 0),
                "Chemistry (%)": result.results.get("sage_chemistry", 0),
                "Biology (%)": result.results.get("sage_biology", 0),
                "Earth Science (%)": result.results.get("sage_earth_science", 0),
                "Astronomy (%)": result.results.get("sage_astronomy", 0),
                "Submission Date": result.submitted_time
            }
            leaderboard_data.append(row)
        
        df = pd.DataFrame(leaderboard_data)
        if not df.empty:
            df = df.sort_values(by=["Overall (%)"], ascending=False)
        
        print(f"βœ… Generated dataframe with {len(df)} rows")
        return df
        
    except Exception as e:
        print(f"❌ Error generating leaderboard dataframe: {e}")
        import traceback
        traceback.print_exc()
        return pd.DataFrame()

def refresh_leaderboard():
    """Refresh the leaderboard data"""
    print("πŸ”„ Refreshing leaderboard data...")
    return get_leaderboard_dataframe()

# Initialize data
print("πŸš€ Initializing SAGE-Bench leaderboard...")
leaderboard_df = get_leaderboard_dataframe()
print(f"πŸ“ˆ Leaderboard initialized with {len(leaderboard_df)} rows")

# Define column types for the dataframe
COLUMN_TYPES = ["markdown", "str", "number", "number", "number", "number", "number", "number", "number", "str"]


# Create Gradio interface
demo = gr.Blocks(css="""
.markdown-text {
    font-size: 16px !important;
}
#citation-button {
    font-family: monospace;
}
""")

with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                lines=10,
                max_lines=10,
                interactive=False
            )

    # Main leaderboard table
    gr.Markdown("## πŸ† SAGE Benchmark Results", elem_classes="markdown-text")
    
    # Debug information
    gr.Markdown(f"πŸ“Š **Showing {len(leaderboard_df)} results**")
    
    leaderboard_table = gr.Dataframe(
        value=leaderboard_df,
        datatype=COLUMN_TYPES,
        interactive=False,
        wrap=True,
        column_widths=["25%", "15%", "8%", "8%", "8%", "8%", "8%", "8%", "8%", "12%"]
    )

    # Refresh button
    refresh_button = gr.Button("πŸ”„ Refresh Leaderboard")
    refresh_button.click(
        refresh_leaderboard,
        inputs=[],
        outputs=[leaderboard_table]
    )

    # Submission section
    with gr.Accordion("πŸ“Š Submit Your SAGE Results", open=False):
        gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        
        with gr.Row():
            with gr.Column():
                org_textbox = gr.Textbox(label="Organization Name", placeholder="Your Organization")
                email_textbox = gr.Textbox(label="Contact Email", placeholder="contact@example.com")
            with gr.Column():
                file_upload = gr.File(
                    label="Upload SAGE Results (JSON)",
                    file_types=[".json"],
                    type="filepath"
                )

        submit_button = gr.Button("Submit Results", variant="primary")
        submission_result = gr.HTML()
        
        # Simplified submission handling
        submit_button.click(
            lambda: format_warning("πŸ“‹ Submission feature coming soon! For now, please contact administrators directly."),
            inputs=[],
            outputs=[submission_result]
        )

# Launch the app
if __name__ == "__main__":
    demo.launch(debug=True)