File size: 8,669 Bytes
f9e337d
 
 
 
 
 
 
 
 
ca09cf3
 
2086543
ca09cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086543
 
f9e337d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e337d
 
2086543
 
 
 
 
f9e337d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results

# Import SAGE-specific modules - avoid transformers dependency
process_sage_results_for_leaderboard = None
try:
    # Import SAGE modules without triggering transformers dependency
    import sys
    import os
    import json
    from dataclasses import dataclass
    from typing import Dict, List, Any
    import numpy as np
    
    # Copy SAGEResult class locally to avoid import issues
    @dataclass
    class SAGEResult:
        submission_id: str
        organization: str
        email: str
        results: Dict[str, float]
        num_predictions: int
        submitted_time: str
        status: str = "EVALUATED"
        
        def to_dict(self):
            """Converts the SAGE Result to a dict compatible with our dataframe display"""
            # Use overall score if available, otherwise calculate average
            if "sage_overall" in self.results:
                average = self.results["sage_overall"]
            else:
                domain_scores = [v for v in self.results.values() if v is not None and isinstance(v, (int, float))]
                average = sum(domain_scores) / len(domain_scores) if domain_scores else 0.0
            
            # Extract model name from submission_id for initial results
            if self.submission_id.startswith("initial_"):
                model_name = self.submission_id.split("_", 2)[-1].replace("_", " ")
                display_name = f"**{model_name}**"
                model_symbol = "🤖"
            else:
                display_name = f"[{self.organization}]({self.email})"
                model_symbol = "🏢"
            
            from src.display.utils import AutoEvalColumn, Tasks
            
            data_dict = {
                "eval_name": self.submission_id,
                AutoEvalColumn.model.name: display_name,
                AutoEvalColumn.model_type_symbol.name: model_symbol,
                AutoEvalColumn.model_type.name: "SAGE Benchmark",
                AutoEvalColumn.precision.name: self.organization,
                AutoEvalColumn.weight_type.name: "Evaluated",
                AutoEvalColumn.architecture.name: "Multi-domain",
                AutoEvalColumn.average.name: round(average, 2),
                AutoEvalColumn.license.name: "N/A",
                AutoEvalColumn.likes.name: 0,
                AutoEvalColumn.params.name: 0,
                AutoEvalColumn.still_on_hub.name: True,
                AutoEvalColumn.revision.name: self.submitted_time,
            }
            
            # Add domain-specific scores
            for task in Tasks:
                domain_key = task.value.benchmark
                data_dict[task.value.col_name] = self.results.get(domain_key, 0.0)
            
            return data_dict
    
    def load_initial_sage_results_local() -> List[SAGEResult]:
        """Load initial SAGE results without external dependencies"""
        possible_paths = [
            "./initial_sage_results.json",
            "initial_sage_results.json",
            os.path.join(os.path.dirname(os.path.dirname(__file__)), "initial_sage_results.json")
        ]
        
        initial_results_path = None
        for path in possible_paths:
            if os.path.exists(path):
                initial_results_path = path
                break
        
        sage_results = []
        
        if initial_results_path:
            try:
                with open(initial_results_path, 'r') as f:
                    initial_data = json.load(f)
                
                for i, entry in enumerate(initial_data):
                    sage_result = SAGEResult(
                        submission_id=f"initial_{i:02d}_{entry['model_name'].replace(' ', '_').replace('-', '_')}",
                        organization=f"{entry['organization']} ({entry['tokens']})",
                        email=f"contact@{entry['organization'].lower().replace(' ', '')}.com",
                        results=entry["results"],
                        num_predictions=1000,
                        submitted_time=entry["submitted_time"],
                        status="EVALUATED"
                    )
                    sage_results.append(sage_result)
                    
            except Exception as e:
                print(f"Error loading initial SAGE results from {initial_results_path}: {e}")
        else:
            print(f"Initial SAGE results file not found. Tried paths: {possible_paths}")
        
        return sage_results
    
    def process_sage_results_for_leaderboard_local(submissions_dir: str = "./sage_submissions") -> List[SAGEResult]:
        """Process all SAGE submissions without external dependencies"""
        sage_results = []
        
        # Load initial benchmark results
        sage_results.extend(load_initial_sage_results_local())
        
        return sage_results
    
    # Set the function
    process_sage_results_for_leaderboard = process_sage_results_for_leaderboard_local
    
except ImportError as e:
    print(f"Could not set up SAGE results processing: {e}")
    process_sage_results_for_leaderboard = None


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    all_data_json = [v.to_dict() for v in raw_data]

    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


def get_sage_leaderboard_df(cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from SAGE evaluation results"""
    if process_sage_results_for_leaderboard is None:
        return pd.DataFrame()
    
    # Get SAGE results
    sage_results = process_sage_results_for_leaderboard()
    all_data_json = [result.to_dict() for result in sage_results]
    
    if not all_data_json:
        return pd.DataFrame()
    
    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[cols].round(decimals=2)
    
    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    if not os.path.exists(save_path):
        # Return empty dataframes if the path doesn't exist
        empty_df = pd.DataFrame(columns=cols)
        return empty_df, empty_df, empty_df
        
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]