Spaces:
Sleeping
Sleeping
SAGE OSS Evaluator
commited on
Commit
·
b1a0fd2
1
Parent(s):
7844386
update
Browse files- src/leaderboard/read_evals.py +0 -196
- src/leaderboard/sage_eval.py +0 -238
- src/populate.py +11 -106
src/leaderboard/read_evals.py
DELETED
|
@@ -1,196 +0,0 @@
|
|
| 1 |
-
import glob
|
| 2 |
-
import json
|
| 3 |
-
import math
|
| 4 |
-
import os
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
|
| 7 |
-
import dateutil
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 12 |
-
from src.submission.check_validity import is_model_on_hub
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
@dataclass
|
| 16 |
-
class EvalResult:
|
| 17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
-
"""
|
| 19 |
-
eval_name: str # org_model_precision (uid)
|
| 20 |
-
full_model: str # org/model (path on hub)
|
| 21 |
-
org: str
|
| 22 |
-
model: str
|
| 23 |
-
revision: str # commit hash, "" if main
|
| 24 |
-
results: dict
|
| 25 |
-
precision: Precision = Precision.Unknown
|
| 26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
-
architecture: str = "Unknown"
|
| 29 |
-
license: str = "?"
|
| 30 |
-
likes: int = 0
|
| 31 |
-
num_params: int = 0
|
| 32 |
-
date: str = "" # submission date of request file
|
| 33 |
-
still_on_hub: bool = False
|
| 34 |
-
|
| 35 |
-
@classmethod
|
| 36 |
-
def init_from_json_file(self, json_filepath):
|
| 37 |
-
"""Inits the result from the specific model result file"""
|
| 38 |
-
with open(json_filepath) as fp:
|
| 39 |
-
data = json.load(fp)
|
| 40 |
-
|
| 41 |
-
config = data.get("config")
|
| 42 |
-
|
| 43 |
-
# Precision
|
| 44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
| 45 |
-
|
| 46 |
-
# Get model and org
|
| 47 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
| 48 |
-
org_and_model = org_and_model.split("/", 1)
|
| 49 |
-
|
| 50 |
-
if len(org_and_model) == 1:
|
| 51 |
-
org = None
|
| 52 |
-
model = org_and_model[0]
|
| 53 |
-
result_key = f"{model}_{precision.value.name}"
|
| 54 |
-
else:
|
| 55 |
-
org = org_and_model[0]
|
| 56 |
-
model = org_and_model[1]
|
| 57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
| 58 |
-
full_model = "/".join(org_and_model)
|
| 59 |
-
|
| 60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
| 62 |
-
)
|
| 63 |
-
architecture = "?"
|
| 64 |
-
if model_config is not None:
|
| 65 |
-
architectures = getattr(model_config, "architectures", None)
|
| 66 |
-
if architectures:
|
| 67 |
-
architecture = ";".join(architectures)
|
| 68 |
-
|
| 69 |
-
# Extract results available in this file (some results are split in several files)
|
| 70 |
-
results = {}
|
| 71 |
-
for task in Tasks:
|
| 72 |
-
task = task.value
|
| 73 |
-
|
| 74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
| 75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
| 76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
-
continue
|
| 78 |
-
|
| 79 |
-
mean_acc = np.mean(accs) * 100.0
|
| 80 |
-
results[task.benchmark] = mean_acc
|
| 81 |
-
|
| 82 |
-
return self(
|
| 83 |
-
eval_name=result_key,
|
| 84 |
-
full_model=full_model,
|
| 85 |
-
org=org,
|
| 86 |
-
model=model,
|
| 87 |
-
results=results,
|
| 88 |
-
precision=precision,
|
| 89 |
-
revision= config.get("model_sha", ""),
|
| 90 |
-
still_on_hub=still_on_hub,
|
| 91 |
-
architecture=architecture
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
def update_with_request_file(self, requests_path):
|
| 95 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
| 96 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 97 |
-
|
| 98 |
-
try:
|
| 99 |
-
with open(request_file, "r") as f:
|
| 100 |
-
request = json.load(f)
|
| 101 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 103 |
-
self.license = request.get("license", "?")
|
| 104 |
-
self.likes = request.get("likes", 0)
|
| 105 |
-
self.num_params = request.get("params", 0)
|
| 106 |
-
self.date = request.get("submitted_time", "")
|
| 107 |
-
except Exception:
|
| 108 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
| 109 |
-
|
| 110 |
-
def to_dict(self):
|
| 111 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 113 |
-
data_dict = {
|
| 114 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
| 115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 119 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
| 120 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 121 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 122 |
-
AutoEvalColumn.average.name: average,
|
| 123 |
-
AutoEvalColumn.license.name: self.license,
|
| 124 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 125 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
for task in Tasks:
|
| 130 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 131 |
-
|
| 132 |
-
return data_dict
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
| 136 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 137 |
-
request_files = os.path.join(
|
| 138 |
-
requests_path,
|
| 139 |
-
f"{model_name}_eval_request_*.json",
|
| 140 |
-
)
|
| 141 |
-
request_files = glob.glob(request_files)
|
| 142 |
-
|
| 143 |
-
# Select correct request file (precision)
|
| 144 |
-
request_file = ""
|
| 145 |
-
request_files = sorted(request_files, reverse=True)
|
| 146 |
-
for tmp_request_file in request_files:
|
| 147 |
-
with open(tmp_request_file, "r") as f:
|
| 148 |
-
req_content = json.load(f)
|
| 149 |
-
if (
|
| 150 |
-
req_content["status"] in ["FINISHED"]
|
| 151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
| 152 |
-
):
|
| 153 |
-
request_file = tmp_request_file
|
| 154 |
-
return request_file
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
| 158 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
| 159 |
-
model_result_filepaths = []
|
| 160 |
-
|
| 161 |
-
for root, _, files in os.walk(results_path):
|
| 162 |
-
# We should only have json files in model results
|
| 163 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 164 |
-
continue
|
| 165 |
-
|
| 166 |
-
# Sort the files by date
|
| 167 |
-
try:
|
| 168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 169 |
-
except dateutil.parser._parser.ParserError:
|
| 170 |
-
files = [files[-1]]
|
| 171 |
-
|
| 172 |
-
for file in files:
|
| 173 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 174 |
-
|
| 175 |
-
eval_results = {}
|
| 176 |
-
for model_result_filepath in model_result_filepaths:
|
| 177 |
-
# Creation of result
|
| 178 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 179 |
-
eval_result.update_with_request_file(requests_path)
|
| 180 |
-
|
| 181 |
-
# Store results of same eval together
|
| 182 |
-
eval_name = eval_result.eval_name
|
| 183 |
-
if eval_name in eval_results.keys():
|
| 184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 185 |
-
else:
|
| 186 |
-
eval_results[eval_name] = eval_result
|
| 187 |
-
|
| 188 |
-
results = []
|
| 189 |
-
for v in eval_results.values():
|
| 190 |
-
try:
|
| 191 |
-
v.to_dict() # we test if the dict version is complete
|
| 192 |
-
results.append(v)
|
| 193 |
-
except KeyError: # not all eval values present
|
| 194 |
-
continue
|
| 195 |
-
|
| 196 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/leaderboard/sage_eval.py
DELETED
|
@@ -1,238 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
from dataclasses import dataclass
|
| 4 |
-
from typing import Dict, List, Any
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
from src.display.formatting import make_clickable_model
|
| 9 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
@dataclass
|
| 13 |
-
class SAGEResult:
|
| 14 |
-
"""Represents one SAGE evaluation result"""
|
| 15 |
-
submission_id: str
|
| 16 |
-
organization: str
|
| 17 |
-
email: str
|
| 18 |
-
results: Dict[str, float] # Domain -> accuracy
|
| 19 |
-
num_predictions: int
|
| 20 |
-
submitted_time: str
|
| 21 |
-
status: str = "EVALUATED"
|
| 22 |
-
|
| 23 |
-
def to_dict(self):
|
| 24 |
-
"""Converts the SAGE Result to a dict compatible with our dataframe display"""
|
| 25 |
-
# Use overall score if available, otherwise calculate average
|
| 26 |
-
if "sage_overall" in self.results:
|
| 27 |
-
average = self.results["sage_overall"]
|
| 28 |
-
else:
|
| 29 |
-
domain_scores = [v for v in self.results.values() if v is not None and isinstance(v, (int, float))]
|
| 30 |
-
average = sum(domain_scores) / len(domain_scores) if domain_scores else 0.0
|
| 31 |
-
|
| 32 |
-
# Extract model name from submission_id for initial results
|
| 33 |
-
if self.submission_id.startswith("initial_"):
|
| 34 |
-
model_name = self.submission_id.split("_", 2)[-1].replace("_", " ")
|
| 35 |
-
display_name = f"**{model_name}**"
|
| 36 |
-
model_symbol = "🤖"
|
| 37 |
-
else:
|
| 38 |
-
display_name = f"[{self.organization}]({self.email})"
|
| 39 |
-
model_symbol = "🏢"
|
| 40 |
-
|
| 41 |
-
data_dict = {
|
| 42 |
-
"eval_name": self.submission_id,
|
| 43 |
-
AutoEvalColumn.model.name: display_name,
|
| 44 |
-
AutoEvalColumn.model_type_symbol.name: model_symbol,
|
| 45 |
-
AutoEvalColumn.model_type.name: "SAGE Benchmark",
|
| 46 |
-
AutoEvalColumn.precision.name: self.organization, # Show organization/context info
|
| 47 |
-
AutoEvalColumn.weight_type.name: "Evaluated",
|
| 48 |
-
AutoEvalColumn.architecture.name: "Multi-domain",
|
| 49 |
-
AutoEvalColumn.average.name: round(average, 2),
|
| 50 |
-
AutoEvalColumn.license.name: "N/A",
|
| 51 |
-
AutoEvalColumn.likes.name: 0,
|
| 52 |
-
AutoEvalColumn.params.name: 0,
|
| 53 |
-
AutoEvalColumn.still_on_hub.name: True,
|
| 54 |
-
AutoEvalColumn.revision.name: self.submitted_time,
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
# Add domain-specific scores
|
| 58 |
-
for task in Tasks:
|
| 59 |
-
domain_key = task.value.benchmark
|
| 60 |
-
data_dict[task.value.col_name] = self.results.get(domain_key, 0.0)
|
| 61 |
-
|
| 62 |
-
return data_dict
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def evaluate_sage_submission(submission_data: Dict[str, Any]) -> Dict[str, float]:
|
| 66 |
-
"""
|
| 67 |
-
Evaluate a SAGE submission and calculate domain-specific accuracies.
|
| 68 |
-
This is a placeholder function - in practice, you would compare against ground truth.
|
| 69 |
-
"""
|
| 70 |
-
|
| 71 |
-
# Placeholder evaluation - in real implementation, you would:
|
| 72 |
-
# 1. Load ground truth answers for each question
|
| 73 |
-
# 2. Compare submitted content with ground truth
|
| 74 |
-
# 3. Calculate accuracy for each scientific domain
|
| 75 |
-
|
| 76 |
-
predictions = submission_data["predictions"]
|
| 77 |
-
|
| 78 |
-
# Simulate domain classification and accuracy calculation
|
| 79 |
-
# In practice, you would have question_id -> domain mapping and ground truth
|
| 80 |
-
domain_counts = {
|
| 81 |
-
"sage_math": 0,
|
| 82 |
-
"sage_physics": 0,
|
| 83 |
-
"sage_chemistry": 0,
|
| 84 |
-
"sage_biology": 0,
|
| 85 |
-
"sage_earth_science": 0,
|
| 86 |
-
"sage_astronomy": 0
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
domain_correct = {
|
| 90 |
-
"sage_math": 0,
|
| 91 |
-
"sage_physics": 0,
|
| 92 |
-
"sage_chemistry": 0,
|
| 93 |
-
"sage_biology": 0,
|
| 94 |
-
"sage_earth_science": 0,
|
| 95 |
-
"sage_astronomy": 0
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
# Simulate evaluation - replace with actual evaluation logic
|
| 99 |
-
total_questions = len(predictions)
|
| 100 |
-
domain_size = total_questions // 6 # Assume equal distribution for demo
|
| 101 |
-
|
| 102 |
-
for i, prediction in enumerate(predictions):
|
| 103 |
-
# Assign questions to domains based on question_id (simplified)
|
| 104 |
-
question_id = prediction["original_question_id"]
|
| 105 |
-
|
| 106 |
-
# Simple domain assignment (in practice, use actual question metadata)
|
| 107 |
-
if question_id % 6 == 0:
|
| 108 |
-
domain = "sage_math"
|
| 109 |
-
elif question_id % 6 == 1:
|
| 110 |
-
domain = "sage_physics"
|
| 111 |
-
elif question_id % 6 == 2:
|
| 112 |
-
domain = "sage_chemistry"
|
| 113 |
-
elif question_id % 6 == 3:
|
| 114 |
-
domain = "sage_biology"
|
| 115 |
-
elif question_id % 6 == 4:
|
| 116 |
-
domain = "sage_earth_science"
|
| 117 |
-
else:
|
| 118 |
-
domain = "sage_astronomy"
|
| 119 |
-
|
| 120 |
-
domain_counts[domain] += 1
|
| 121 |
-
|
| 122 |
-
# Simulate accuracy (replace with actual evaluation against ground truth)
|
| 123 |
-
# For demo purposes, assign random accuracy between 60-90%
|
| 124 |
-
np.random.seed(question_id) # Consistent "accuracy" for demo
|
| 125 |
-
is_correct = np.random.random() > 0.3 # 70% accuracy simulation
|
| 126 |
-
|
| 127 |
-
if is_correct:
|
| 128 |
-
domain_correct[domain] += 1
|
| 129 |
-
|
| 130 |
-
# Calculate accuracies
|
| 131 |
-
domain_accuracies = {}
|
| 132 |
-
for domain in domain_counts:
|
| 133 |
-
if domain_counts[domain] > 0:
|
| 134 |
-
accuracy = (domain_correct[domain] / domain_counts[domain]) * 100
|
| 135 |
-
domain_accuracies[domain] = round(accuracy, 2)
|
| 136 |
-
else:
|
| 137 |
-
domain_accuracies[domain] = 0.0
|
| 138 |
-
|
| 139 |
-
# Add overall accuracy
|
| 140 |
-
total_correct = sum(domain_correct.values())
|
| 141 |
-
total_questions = sum(domain_counts.values())
|
| 142 |
-
overall_accuracy = (total_correct / total_questions) * 100 if total_questions > 0 else 0.0
|
| 143 |
-
domain_accuracies["sage_overall"] = round(overall_accuracy, 2)
|
| 144 |
-
|
| 145 |
-
return domain_accuracies
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def load_initial_sage_results() -> List[SAGEResult]:
|
| 149 |
-
"""Load initial SAGE results from the provided performance table"""
|
| 150 |
-
# Try multiple possible paths for the initial results file
|
| 151 |
-
possible_paths = [
|
| 152 |
-
"./initial_sage_results.json",
|
| 153 |
-
"initial_sage_results.json",
|
| 154 |
-
os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "initial_sage_results.json")
|
| 155 |
-
]
|
| 156 |
-
|
| 157 |
-
initial_results_path = None
|
| 158 |
-
for path in possible_paths:
|
| 159 |
-
if os.path.exists(path):
|
| 160 |
-
initial_results_path = path
|
| 161 |
-
break
|
| 162 |
-
|
| 163 |
-
sage_results = []
|
| 164 |
-
|
| 165 |
-
if initial_results_path:
|
| 166 |
-
try:
|
| 167 |
-
with open(initial_results_path, 'r') as f:
|
| 168 |
-
initial_data = json.load(f)
|
| 169 |
-
|
| 170 |
-
for i, entry in enumerate(initial_data):
|
| 171 |
-
sage_result = SAGEResult(
|
| 172 |
-
submission_id=f"initial_{i:02d}_{entry['model_name'].replace(' ', '_').replace('-', '_')}",
|
| 173 |
-
organization=f"{entry['organization']} ({entry['tokens']})",
|
| 174 |
-
email=f"contact@{entry['organization'].lower().replace(' ', '')}.com",
|
| 175 |
-
results=entry["results"],
|
| 176 |
-
num_predictions=1000, # Estimated from benchmark
|
| 177 |
-
submitted_time=entry["submitted_time"],
|
| 178 |
-
status="EVALUATED"
|
| 179 |
-
)
|
| 180 |
-
sage_results.append(sage_result)
|
| 181 |
-
|
| 182 |
-
except Exception as e:
|
| 183 |
-
print(f"Error loading initial SAGE results from {initial_results_path}: {e}")
|
| 184 |
-
else:
|
| 185 |
-
print(f"Initial SAGE results file not found. Tried paths: {possible_paths}")
|
| 186 |
-
print(f"Current working directory: {os.getcwd()}")
|
| 187 |
-
print(f"Files in current directory: {os.listdir('.')}")
|
| 188 |
-
|
| 189 |
-
return sage_results
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def process_sage_results_for_leaderboard(submissions_dir: str = "./sage_submissions") -> List[SAGEResult]:
|
| 193 |
-
"""Process all SAGE submissions and convert them to leaderboard format"""
|
| 194 |
-
|
| 195 |
-
sage_results = []
|
| 196 |
-
|
| 197 |
-
# Load initial benchmark results
|
| 198 |
-
sage_results.extend(load_initial_sage_results())
|
| 199 |
-
|
| 200 |
-
# Load user submissions if directory exists
|
| 201 |
-
if os.path.exists(submissions_dir):
|
| 202 |
-
for org_dir in os.listdir(submissions_dir):
|
| 203 |
-
org_path = os.path.join(submissions_dir, org_dir)
|
| 204 |
-
if not os.path.isdir(org_path):
|
| 205 |
-
continue
|
| 206 |
-
|
| 207 |
-
for file in os.listdir(org_path):
|
| 208 |
-
if file.startswith("submission_") and file.endswith(".json"):
|
| 209 |
-
try:
|
| 210 |
-
# Load submission data
|
| 211 |
-
submission_path = os.path.join(org_path, file)
|
| 212 |
-
with open(submission_path, 'r') as f:
|
| 213 |
-
submission_data = json.load(f)
|
| 214 |
-
|
| 215 |
-
# Evaluate the submission
|
| 216 |
-
domain_accuracies = evaluate_sage_submission(submission_data)
|
| 217 |
-
|
| 218 |
-
# Create result object
|
| 219 |
-
timestamp = file.replace("submission_", "").replace(".json", "")
|
| 220 |
-
submission_id = f"{org_dir}_{timestamp}"
|
| 221 |
-
|
| 222 |
-
sage_result = SAGEResult(
|
| 223 |
-
submission_id=submission_id,
|
| 224 |
-
organization=submission_data["submission_org"],
|
| 225 |
-
email=submission_data["submission_email"],
|
| 226 |
-
results=domain_accuracies,
|
| 227 |
-
num_predictions=len(submission_data["predictions"]),
|
| 228 |
-
submitted_time=timestamp,
|
| 229 |
-
status="EVALUATED"
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
sage_results.append(sage_result)
|
| 233 |
-
|
| 234 |
-
except Exception as e:
|
| 235 |
-
print(f"Error processing SAGE submission {file}: {e}")
|
| 236 |
-
continue
|
| 237 |
-
|
| 238 |
-
return sage_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
|
@@ -5,8 +5,7 @@ import pandas as pd
|
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 8 |
-
from src.display.utils import AutoEvalColumn
|
| 9 |
-
# from src.leaderboard.read_evals import get_raw_eval_results # Removed to avoid transformers dependency
|
| 10 |
|
| 11 |
# Import SAGE-specific modules - avoid transformers dependency
|
| 12 |
process_sage_results_for_leaderboard = None
|
|
@@ -73,13 +72,12 @@ try:
|
|
| 73 |
|
| 74 |
return data_dict
|
| 75 |
|
| 76 |
-
def
|
| 77 |
-
"""Load initial SAGE results from OSS
|
| 78 |
sage_results = []
|
| 79 |
|
| 80 |
-
# 尝试从OSS加载
|
| 81 |
try:
|
| 82 |
-
# 导入OSS
|
| 83 |
from src.oss.oss_leaderboard_manager import OSSLeaderboardManager
|
| 84 |
|
| 85 |
# 从OSS加载排行榜数据
|
|
@@ -100,78 +98,26 @@ try:
|
|
| 100 |
status="EVALUATED"
|
| 101 |
)
|
| 102 |
sage_results.append(sage_result)
|
| 103 |
-
|
| 104 |
-
return sage_results
|
| 105 |
else:
|
| 106 |
-
print("⚠️ OSS
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
-
print(f"
|
| 110 |
-
print("🔄 回退到本地文件模式")
|
| 111 |
-
|
| 112 |
-
# 回退到本地文件模式
|
| 113 |
-
possible_paths = [
|
| 114 |
-
"./initial_sage_results.json",
|
| 115 |
-
"initial_sage_results.json",
|
| 116 |
-
os.path.join(os.path.dirname(os.path.dirname(__file__)), "initial_sage_results.json")
|
| 117 |
-
]
|
| 118 |
-
|
| 119 |
-
initial_results_path = None
|
| 120 |
-
for path in possible_paths:
|
| 121 |
-
if os.path.exists(path):
|
| 122 |
-
initial_results_path = path
|
| 123 |
-
break
|
| 124 |
-
|
| 125 |
-
if initial_results_path:
|
| 126 |
-
try:
|
| 127 |
-
with open(initial_results_path, 'r') as f:
|
| 128 |
-
initial_data = json.load(f)
|
| 129 |
-
|
| 130 |
-
print(f"✅ 从本地文件加载了 {len(initial_data)} 条排行榜记录: {initial_results_path}")
|
| 131 |
-
|
| 132 |
-
for i, entry in enumerate(initial_data):
|
| 133 |
-
sage_result = SAGEResult(
|
| 134 |
-
submission_id=f"local_{i:02d}_{entry['model_name'].replace(' ', '_').replace('-', '_')}",
|
| 135 |
-
organization=f"{entry['organization']} ({entry.get('tokens', 'N/A')})",
|
| 136 |
-
email=entry.get('contact_email', f"contact@{entry['organization'].lower().replace(' ', '')}.com"),
|
| 137 |
-
results=entry["results"],
|
| 138 |
-
num_predictions=1000,
|
| 139 |
-
submitted_time=entry["submitted_time"],
|
| 140 |
-
status="EVALUATED"
|
| 141 |
-
)
|
| 142 |
-
sage_results.append(sage_result)
|
| 143 |
-
|
| 144 |
-
except Exception as e:
|
| 145 |
-
print(f"❌ 从本地文件加载排行榜失败 {initial_results_path}: {e}")
|
| 146 |
-
else:
|
| 147 |
-
print(f"❌ 未找到排行榜文件。尝试过的路径: {possible_paths}")
|
| 148 |
|
| 149 |
return sage_results
|
| 150 |
|
| 151 |
-
def
|
| 152 |
-
"""Process all SAGE
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# Load initial benchmark results
|
| 156 |
-
sage_results.extend(load_initial_sage_results_local())
|
| 157 |
-
|
| 158 |
-
return sage_results
|
| 159 |
|
| 160 |
# Set the function
|
| 161 |
-
process_sage_results_for_leaderboard =
|
| 162 |
|
| 163 |
except ImportError as e:
|
| 164 |
print(f"Could not set up SAGE results processing: {e}")
|
| 165 |
process_sage_results_for_leaderboard = None
|
| 166 |
|
| 167 |
|
| 168 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 169 |
-
"""Creates a dataframe from all the individual experiment results - disabled for SAGE"""
|
| 170 |
-
# For SAGE, we use get_sage_leaderboard_df instead
|
| 171 |
-
print("⚠️ get_leaderboard_df called - use get_sage_leaderboard_df for SAGE instead")
|
| 172 |
-
return pd.DataFrame()
|
| 173 |
-
|
| 174 |
-
|
| 175 |
def get_sage_leaderboard_df(cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 176 |
"""Creates a dataframe from SAGE evaluation results"""
|
| 177 |
if process_sage_results_for_leaderboard is None:
|
|
@@ -190,45 +136,4 @@ def get_sage_leaderboard_df(cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
| 190 |
|
| 191 |
# filter out if any of the benchmarks have not been produced
|
| 192 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 193 |
-
return df
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> List[pd.DataFrame]:
|
| 197 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 198 |
-
if not os.path.exists(save_path):
|
| 199 |
-
# Return empty dataframes if the path doesn't exist
|
| 200 |
-
empty_df = pd.DataFrame(columns=cols)
|
| 201 |
-
return empty_df, empty_df, empty_df
|
| 202 |
-
|
| 203 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 204 |
-
all_evals = []
|
| 205 |
-
|
| 206 |
-
for entry in entries:
|
| 207 |
-
if ".json" in entry:
|
| 208 |
-
file_path = os.path.join(save_path, entry)
|
| 209 |
-
with open(file_path) as fp:
|
| 210 |
-
data = json.load(fp)
|
| 211 |
-
|
| 212 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 213 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 214 |
-
|
| 215 |
-
all_evals.append(data)
|
| 216 |
-
elif ".md" not in entry:
|
| 217 |
-
# this is a folder
|
| 218 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
| 219 |
-
for sub_entry in sub_entries:
|
| 220 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
| 221 |
-
with open(file_path) as fp:
|
| 222 |
-
data = json.load(fp)
|
| 223 |
-
|
| 224 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 225 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 226 |
-
all_evals.append(data)
|
| 227 |
-
|
| 228 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 229 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 230 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 231 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 232 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 233 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 234 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 8 |
+
from src.display.utils import AutoEvalColumn
|
|
|
|
| 9 |
|
| 10 |
# Import SAGE-specific modules - avoid transformers dependency
|
| 11 |
process_sage_results_for_leaderboard = None
|
|
|
|
| 72 |
|
| 73 |
return data_dict
|
| 74 |
|
| 75 |
+
def load_initial_sage_results_from_oss() -> List[SAGEResult]:
|
| 76 |
+
"""Load initial SAGE results from OSS"""
|
| 77 |
sage_results = []
|
| 78 |
|
|
|
|
| 79 |
try:
|
| 80 |
+
# 导入OSS排行榜管理器
|
| 81 |
from src.oss.oss_leaderboard_manager import OSSLeaderboardManager
|
| 82 |
|
| 83 |
# 从OSS加载排行榜数据
|
|
|
|
| 98 |
status="EVALUATED"
|
| 99 |
)
|
| 100 |
sage_results.append(sage_result)
|
|
|
|
|
|
|
| 101 |
else:
|
| 102 |
+
print("⚠️ OSS中未找到排行榜数据")
|
| 103 |
|
| 104 |
except Exception as e:
|
| 105 |
+
print(f"❌ 从OSS加载排行榜失败: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
return sage_results
|
| 108 |
|
| 109 |
+
def process_sage_results_for_leaderboard_oss() -> List[SAGEResult]:
|
| 110 |
+
"""Process all SAGE results from OSS"""
|
| 111 |
+
return load_initial_sage_results_from_oss()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
# Set the function
|
| 114 |
+
process_sage_results_for_leaderboard = process_sage_results_for_leaderboard_oss
|
| 115 |
|
| 116 |
except ImportError as e:
|
| 117 |
print(f"Could not set up SAGE results processing: {e}")
|
| 118 |
process_sage_results_for_leaderboard = None
|
| 119 |
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
def get_sage_leaderboard_df(cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 122 |
"""Creates a dataframe from SAGE evaluation results"""
|
| 123 |
if process_sage_results_for_leaderboard is None:
|
|
|
|
| 136 |
|
| 137 |
# filter out if any of the benchmarks have not been produced
|
| 138 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 139 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|