Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import base64
|
| 4 |
+
import requests
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import onnxruntime
|
| 9 |
+
import cv2
|
| 10 |
+
|
| 11 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 12 |
+
# Configuration
|
| 13 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 14 |
+
|
| 15 |
+
HF_TOKEN = os.environ["HF_TOKEN_API_DEMO"]
|
| 16 |
+
AUTH_HEADERS = {"api_token": HF_TOKEN}
|
| 17 |
+
BRIA_API_URL = "http://engine.prod.bria-api.com/v1/gen_fill"
|
| 18 |
+
|
| 19 |
+
# List your local ONNX upscaler model names (without .ort extension)
|
| 20 |
+
UPSCALE_MODELS = ["modelx2", "modelx4"]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 24 |
+
# Helper Functions
|
| 25 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 26 |
+
|
| 27 |
+
def pil_to_base64(img: Image.Image) -> str:
|
| 28 |
+
"""Convert a PIL image to a base64 string prefixed with a comma."""
|
| 29 |
+
buf = io.BytesIO()
|
| 30 |
+
img.save(buf, format="PNG")
|
| 31 |
+
b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
| 32 |
+
return f",{b64}"
|
| 33 |
+
|
| 34 |
+
def download_pil_image(url: str) -> Image.Image:
|
| 35 |
+
r = requests.get(url)
|
| 36 |
+
return Image.open(io.BytesIO(r.content)).convert("RGB")
|
| 37 |
+
|
| 38 |
+
def gen_fill(image: Image.Image, mask: Image.Image, prompt: str) -> Image.Image:
|
| 39 |
+
"""Call the BRIA Generative Fill API."""
|
| 40 |
+
payload = {
|
| 41 |
+
"file": pil_to_base64(image),
|
| 42 |
+
"mask_file": pil_to_base64(mask),
|
| 43 |
+
"prompt": prompt,
|
| 44 |
+
"steps_num": 12,
|
| 45 |
+
"sync": True,
|
| 46 |
+
}
|
| 47 |
+
res = requests.post(BRIA_API_URL, json=payload, headers=AUTH_HEADERS).json()
|
| 48 |
+
return download_pil_image(res["urls"][0])
|
| 49 |
+
|
| 50 |
+
def to_onnx_input(img: np.ndarray) -> np.ndarray:
|
| 51 |
+
img = img[:, :, :3] # BGR or RGB first three channels
|
| 52 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # ensure RGB
|
| 53 |
+
img = img.astype(np.float32) / 255.0
|
| 54 |
+
img = np.transpose(img, (2, 0, 1))[None, ...]
|
| 55 |
+
return img
|
| 56 |
+
|
| 57 |
+
def from_onnx_output(arr: np.ndarray) -> np.ndarray:
|
| 58 |
+
arr = np.squeeze(arr, axis=0)
|
| 59 |
+
arr = np.clip(arr, 0, 1) * 255
|
| 60 |
+
arr = np.transpose(arr, (1, 2, 0)).astype(np.uint8)
|
| 61 |
+
return arr
|
| 62 |
+
|
| 63 |
+
def upscale_image(img: Image.Image, model_name: str) -> Image.Image:
|
| 64 |
+
"""Run ONNX upscaler on a PIL image."""
|
| 65 |
+
model_path = f"models/{model_name}.ort"
|
| 66 |
+
sess = onnxruntime.InferenceSession(model_path, sess_options=onnxruntime.SessionOptions())
|
| 67 |
+
inp = to_onnx_input(np.array(img)[:, :, ::-1]) # PIL is RGB, convert to BGR
|
| 68 |
+
out = sess.run(None, {sess.get_inputs()[0].name: inp})[0]
|
| 69 |
+
arr = from_onnx_output(out)
|
| 70 |
+
# The ONNX model outputs BGR; convert back to RGB
|
| 71 |
+
rgb = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
| 72 |
+
return Image.fromarray(rgb)
|
| 73 |
+
|
| 74 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 75 |
+
# Gradio Interface
|
| 76 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 77 |
+
|
| 78 |
+
with gr.Blocks(css="""
|
| 79 |
+
.gradio-container {max-width: 900px;}
|
| 80 |
+
#run_button {width:100%; height:48px;}
|
| 81 |
+
#image_editor img {object-fit: contain; width:100%; height:auto;}
|
| 82 |
+
#output_col img {object-fit: contain; width:100%; height:auto;}
|
| 83 |
+
""") as demo:
|
| 84 |
+
|
| 85 |
+
gr.Markdown("## BRIA Generative Fill + ONNX Upscaler")
|
| 86 |
+
gr.Markdown("1. Upload your image and draw a mask. 2. Enter a prompt. 3. Choose an upscaler and click **Run**.")
|
| 87 |
+
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column(scale=1):
|
| 90 |
+
editor = gr.ImageEditor(
|
| 91 |
+
label="Input Image & Mask",
|
| 92 |
+
tool="editor", brush=gr.Brush(color_mode="binary"),
|
| 93 |
+
height=400
|
| 94 |
+
)
|
| 95 |
+
prompt = gr.Textbox(label="Prompt", placeholder="e.g. βAdd a sunset skyβ")
|
| 96 |
+
upscaler = gr.Radio(
|
| 97 |
+
choices=UPSCALE_MODELS,
|
| 98 |
+
label="Select Upscaler Model",
|
| 99 |
+
value=UPSCALE_MODELS[0]
|
| 100 |
+
)
|
| 101 |
+
btn = gr.Button("Run", elem_id="run_button")
|
| 102 |
+
|
| 103 |
+
with gr.Column(scale=1, elem_id="output_col"):
|
| 104 |
+
output = gr.Image(label="High-Def Output", height=400)
|
| 105 |
+
|
| 106 |
+
def run_pipeline(ed_img, txt, model_name):
|
| 107 |
+
# ed_img is a RGBA numpy array: [:,:,0:3] = image, [:,:,3] = mask
|
| 108 |
+
pil_in = Image.fromarray(ed_img[:, :, :3], "RGB")
|
| 109 |
+
pil_mask = Image.fromarray(ed_img[:, :, 3], "L")
|
| 110 |
+
filled = gen_fill(pil_in, pil_mask, txt)
|
| 111 |
+
up_img = upscale_image(filled, model_name)
|
| 112 |
+
return up_img
|
| 113 |
+
|
| 114 |
+
btn.click(fn=run_pipeline, inputs=[editor, prompt, upscaler], outputs=[output])
|
| 115 |
+
|
| 116 |
+
demo.launch()
|