Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import torch | |
| from .model import gaussian_diffusion as gd | |
| from .model.dpm_solver import DPM_Solver, NoiseScheduleFlow, NoiseScheduleVP, model_wrapper | |
| def DPMS( | |
| model, | |
| condition, | |
| uncondition, | |
| cfg_scale, | |
| pag_scale=1.0, | |
| pag_applied_layers=None, | |
| model_type="noise", # or "x_start" or "v" or "score", "flow" | |
| noise_schedule="linear", | |
| guidance_type="classifier-free", | |
| model_kwargs=None, | |
| diffusion_steps=1000, | |
| schedule="VP", | |
| interval_guidance=None, | |
| ): | |
| if pag_applied_layers is None: | |
| pag_applied_layers = [] | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if interval_guidance is None: | |
| interval_guidance = [0, 1.0] | |
| betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
| ## 1. Define the noise schedule. | |
| if schedule == "VP": | |
| noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas) | |
| elif schedule == "FLOW": | |
| noise_schedule = NoiseScheduleFlow(schedule="discrete_flow") | |
| ## 2. Convert your discrete-time `model` to the continuous-time | |
| ## noise prediction model. Here is an example for a diffusion model | |
| ## `model` with the noise prediction type ("noise") . | |
| model_fn = model_wrapper( | |
| model, | |
| noise_schedule, | |
| model_type=model_type, | |
| model_kwargs=model_kwargs, | |
| guidance_type=guidance_type, | |
| pag_scale=pag_scale, | |
| pag_applied_layers=pag_applied_layers, | |
| condition=condition, | |
| unconditional_condition=uncondition, | |
| guidance_scale=cfg_scale, | |
| interval_guidance=interval_guidance, | |
| ) | |
| ## 3. Define dpm-solver and sample by multistep DPM-Solver. | |
| return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |