Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import torch | |
| from diffusers import AutoencoderDC | |
| from diffusers.models import AutoencoderKL | |
| from mmcv import Registry | |
| from termcolor import colored | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, T5EncoderModel, T5Tokenizer | |
| from transformers import logging as transformers_logging | |
| from diffusion.model.dc_ae.efficientvit.ae_model_zoo import DCAE_HF | |
| from diffusion.model.utils import set_fp32_attention, set_grad_checkpoint | |
| MODELS = Registry("models") | |
| transformers_logging.set_verbosity_error() | |
| def build_model(cfg, use_grad_checkpoint=False, use_fp32_attention=False, gc_step=1, **kwargs): | |
| if isinstance(cfg, str): | |
| cfg = dict(type=cfg) | |
| model = MODELS.build(cfg, default_args=kwargs) | |
| if use_grad_checkpoint: | |
| set_grad_checkpoint(model, gc_step=gc_step) | |
| if use_fp32_attention: | |
| set_fp32_attention(model) | |
| return model | |
| def get_tokenizer_and_text_encoder(name="T5", device="cuda"): | |
| text_encoder_dict = { | |
| "T5": "DeepFloyd/t5-v1_1-xxl", | |
| "T5-small": "google/t5-v1_1-small", | |
| "T5-base": "google/t5-v1_1-base", | |
| "T5-large": "google/t5-v1_1-large", | |
| "T5-xl": "google/t5-v1_1-xl", | |
| "T5-xxl": "google/t5-v1_1-xxl", | |
| "gemma-2b": "google/gemma-2b", | |
| "gemma-2b-it": "google/gemma-2b-it", | |
| "gemma-2-2b": "google/gemma-2-2b", | |
| "gemma-2-2b-it": "google/gemma-2-2b-it", | |
| "gemma-2-9b": "google/gemma-2-9b", | |
| "gemma-2-9b-it": "google/gemma-2-9b-it", | |
| "Qwen2-0.5B-Instruct": "Qwen/Qwen2-0.5B-Instruct", | |
| "Qwen2-1.5B-Instruct": "Qwen/Qwen2-1.5B-Instruct", | |
| } | |
| assert name in list(text_encoder_dict.keys()), f"not support this text encoder: {name}" | |
| if "T5" in name: | |
| tokenizer = T5Tokenizer.from_pretrained(text_encoder_dict[name]) | |
| text_encoder = T5EncoderModel.from_pretrained(text_encoder_dict[name], torch_dtype=torch.float16).to(device) | |
| elif "gemma" in name or "Qwen" in name: | |
| tokenizer = AutoTokenizer.from_pretrained(text_encoder_dict[name]) | |
| tokenizer.padding_side = "right" | |
| text_encoder = ( | |
| AutoModelForCausalLM.from_pretrained(text_encoder_dict[name], torch_dtype=torch.bfloat16) | |
| .get_decoder() | |
| .to(device) | |
| ) | |
| else: | |
| print("error load text encoder") | |
| exit() | |
| return tokenizer, text_encoder | |
| def get_vae(name, model_path, device="cuda"): | |
| if name == "sdxl" or name == "sd3": | |
| vae = AutoencoderKL.from_pretrained(model_path).to(device).to(torch.float16) | |
| if name == "sdxl": | |
| vae.config.shift_factor = 0 | |
| return vae | |
| elif "dc-ae" in name: | |
| print(colored(f"[DC-AE] Loading model from {model_path}", attrs=["bold"])) | |
| dc_ae = DCAE_HF.from_pretrained(model_path).to(device).eval() | |
| return dc_ae | |
| elif "AutoencoderDC" in name: | |
| print(colored(f"[AutoencoderDC] Loading model from {model_path}", attrs=["bold"])) | |
| dc_ae = AutoencoderDC.from_pretrained(model_path).to(device).eval() | |
| return dc_ae | |
| else: | |
| print("error load vae") | |
| exit() | |
| def vae_encode(name, vae, images, sample_posterior, device): | |
| if name == "sdxl" or name == "sd3": | |
| posterior = vae.encode(images.to(device)).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| z = (z - vae.config.shift_factor) * vae.config.scaling_factor | |
| elif "dc-ae" in name: | |
| ae = vae | |
| scaling_factor = ae.cfg.scaling_factor if ae.cfg.scaling_factor else 0.41407 | |
| z = ae.encode(images.to(device)) | |
| z = z * scaling_factor | |
| elif "AutoencoderDC" in name: | |
| ae = vae | |
| scaling_factor = ae.config.scaling_factor if ae.config.scaling_factor else 0.41407 | |
| z = ae.encode(images.to(device))[0] | |
| z = z * scaling_factor | |
| else: | |
| print("error load vae") | |
| exit() | |
| return z | |
| def vae_decode(name, vae, latent): | |
| if name == "sdxl" or name == "sd3": | |
| latent = (latent.detach() / vae.config.scaling_factor) + vae.config.shift_factor | |
| samples = vae.decode(latent).sample | |
| elif "dc-ae" in name: | |
| ae = vae | |
| vae_scale_factor = ( | |
| 2 ** (len(ae.config.encoder_block_out_channels) - 1) | |
| if hasattr(ae, "config") and ae.config is not None | |
| else 32 | |
| ) | |
| scaling_factor = ae.cfg.scaling_factor if ae.cfg.scaling_factor else 0.41407 | |
| if latent.shape[-1] * vae_scale_factor > 4000 or latent.shape[-2] * vae_scale_factor > 4000: | |
| from patch_conv import convert_model | |
| ae = convert_model(ae, splits=4) | |
| samples = ae.decode(latent.detach() / scaling_factor) | |
| elif "AutoencoderDC" in name: | |
| ae = vae | |
| scaling_factor = ae.config.scaling_factor if ae.config.scaling_factor else 0.41407 | |
| try: | |
| samples = ae.decode(latent / scaling_factor, return_dict=False)[0] | |
| except torch.cuda.OutOfMemoryError as e: | |
| print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") | |
| ae.enable_tiling(tile_sample_min_height=1024, tile_sample_min_width=1024) | |
| samples = ae.decode(latent / scaling_factor, return_dict=False)[0] | |
| else: | |
| print("error load vae") | |
| exit() | |
| return samples | |