Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
| import torch | |
| import torch.nn as nn | |
| from timm.models.vision_transformer import Mlp | |
| from diffusion.model.act import build_act, get_act_name | |
| from diffusion.model.norms import build_norm, get_norm_name | |
| from diffusion.model.utils import get_same_padding, val2tuple | |
| class ConvLayer(nn.Module): | |
| def __init__( | |
| self, | |
| in_dim: int, | |
| out_dim: int, | |
| kernel_size=3, | |
| stride=1, | |
| dilation=1, | |
| groups=1, | |
| padding: int or None = None, | |
| use_bias=False, | |
| dropout=0.0, | |
| norm="bn2d", | |
| act="relu", | |
| ): | |
| super().__init__() | |
| if padding is None: | |
| padding = get_same_padding(kernel_size) | |
| padding *= dilation | |
| self.in_dim = in_dim | |
| self.out_dim = out_dim | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.groups = groups | |
| self.padding = padding | |
| self.use_bias = use_bias | |
| self.dropout = nn.Dropout2d(dropout, inplace=False) if dropout > 0 else None | |
| self.conv = nn.Conv2d( | |
| in_dim, | |
| out_dim, | |
| kernel_size=(kernel_size, kernel_size), | |
| stride=(stride, stride), | |
| padding=padding, | |
| dilation=(dilation, dilation), | |
| groups=groups, | |
| bias=use_bias, | |
| ) | |
| self.norm = build_norm(norm, num_features=out_dim) | |
| self.act = build_act(act) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| if self.dropout is not None: | |
| x = self.dropout(x) | |
| x = self.conv(x) | |
| if self.norm: | |
| x = self.norm(x) | |
| if self.act: | |
| x = self.act(x) | |
| return x | |
| class GLUMBConv(nn.Module): | |
| def __init__( | |
| self, | |
| in_features: int, | |
| hidden_features: int, | |
| out_feature=None, | |
| kernel_size=3, | |
| stride=1, | |
| padding: int or None = None, | |
| use_bias=False, | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| dilation=1, | |
| ): | |
| out_feature = out_feature or in_features | |
| super().__init__() | |
| use_bias = val2tuple(use_bias, 3) | |
| norm = val2tuple(norm, 3) | |
| act = val2tuple(act, 3) | |
| self.glu_act = build_act(act[1], inplace=False) | |
| self.inverted_conv = ConvLayer( | |
| in_features, | |
| hidden_features * 2, | |
| 1, | |
| use_bias=use_bias[0], | |
| norm=norm[0], | |
| act=act[0], | |
| ) | |
| self.depth_conv = ConvLayer( | |
| hidden_features * 2, | |
| hidden_features * 2, | |
| kernel_size, | |
| stride=stride, | |
| groups=hidden_features * 2, | |
| padding=padding, | |
| use_bias=use_bias[1], | |
| norm=norm[1], | |
| act=None, | |
| dilation=dilation, | |
| ) | |
| self.point_conv = ConvLayer( | |
| hidden_features, | |
| out_feature, | |
| 1, | |
| use_bias=use_bias[2], | |
| norm=norm[2], | |
| act=act[2], | |
| ) | |
| # from IPython import embed; embed(header='debug dilate conv') | |
| def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: | |
| B, N, C = x.shape | |
| if HW is None: | |
| H = W = int(N**0.5) | |
| else: | |
| H, W = HW | |
| x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
| x = self.inverted_conv(x) | |
| x = self.depth_conv(x) | |
| x, gate = torch.chunk(x, 2, dim=1) | |
| gate = self.glu_act(gate) | |
| x = x * gate | |
| x = self.point_conv(x) | |
| x = x.reshape(B, C, N).permute(0, 2, 1) | |
| return x | |
| class SlimGLUMBConv(GLUMBConv): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # 移除 self.inverted_conv 层 | |
| del self.inverted_conv | |
| self.out_dim = self.point_conv.out_dim | |
| def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: | |
| B, N, C = x.shape | |
| if HW is None: | |
| H = W = int(N**0.5) | |
| else: | |
| H, W = HW | |
| # 直接使用 x,跳过 self.inverted_conv 层的调用 | |
| x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
| # x = self.inverted_conv(x) | |
| x = self.depth_conv(x) | |
| x, gate = torch.chunk(x, 2, dim=1) | |
| gate = self.glu_act(gate) | |
| x = x * gate | |
| x = self.point_conv(x) | |
| x = x.reshape(B, self.out_dim, N).permute(0, 2, 1) | |
| return x | |
| class MBConvPreGLU(nn.Module): | |
| def __init__( | |
| self, | |
| in_dim: int, | |
| out_dim: int, | |
| kernel_size=3, | |
| stride=1, | |
| mid_dim=None, | |
| expand=6, | |
| padding: int or None = None, | |
| use_bias=False, | |
| norm=(None, None, "ln2d"), | |
| act=("silu", "silu", None), | |
| ): | |
| super().__init__() | |
| use_bias = val2tuple(use_bias, 3) | |
| norm = val2tuple(norm, 3) | |
| act = val2tuple(act, 3) | |
| mid_dim = mid_dim or round(in_dim * expand) | |
| self.inverted_conv = ConvLayer( | |
| in_dim, | |
| mid_dim * 2, | |
| 1, | |
| use_bias=use_bias[0], | |
| norm=norm[0], | |
| act=None, | |
| ) | |
| self.glu_act = build_act(act[0], inplace=False) | |
| self.depth_conv = ConvLayer( | |
| mid_dim, | |
| mid_dim, | |
| kernel_size, | |
| stride=stride, | |
| groups=mid_dim, | |
| padding=padding, | |
| use_bias=use_bias[1], | |
| norm=norm[1], | |
| act=act[1], | |
| ) | |
| self.point_conv = ConvLayer( | |
| mid_dim, | |
| out_dim, | |
| 1, | |
| use_bias=use_bias[2], | |
| norm=norm[2], | |
| act=act[2], | |
| ) | |
| def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: | |
| B, N, C = x.shape | |
| if HW is None: | |
| H = W = int(N**0.5) | |
| else: | |
| H, W = HW | |
| x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
| x = self.inverted_conv(x) | |
| x, gate = torch.chunk(x, 2, dim=1) | |
| gate = self.glu_act(gate) | |
| x = x * gate | |
| x = self.depth_conv(x) | |
| x = self.point_conv(x) | |
| x = x.reshape(B, C, N).permute(0, 2, 1) | |
| return x | |
| def module_str(self) -> str: | |
| _str = f"{self.depth_conv.kernel_size}{type(self).__name__}(" | |
| _str += f"in={self.inverted_conv.in_dim},mid={self.depth_conv.in_dim},out={self.point_conv.out_dim},s={self.depth_conv.stride}" | |
| _str += ( | |
| f",norm={get_norm_name(self.inverted_conv.norm)}" | |
| f"+{get_norm_name(self.depth_conv.norm)}" | |
| f"+{get_norm_name(self.point_conv.norm)}" | |
| ) | |
| _str += ( | |
| f",act={get_act_name(self.inverted_conv.act)}" | |
| f"+{get_act_name(self.depth_conv.act)}" | |
| f"+{get_act_name(self.point_conv.act)}" | |
| ) | |
| _str += f",glu_act={get_act_name(self.glu_act)})" | |
| return _str | |
| class DWMlp(Mlp): | |
| """MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| bias=True, | |
| drop=0.0, | |
| kernel_size=3, | |
| stride=1, | |
| dilation=1, | |
| padding=None, | |
| ): | |
| super().__init__( | |
| in_features=in_features, | |
| hidden_features=hidden_features, | |
| out_features=out_features, | |
| act_layer=act_layer, | |
| bias=bias, | |
| drop=drop, | |
| ) | |
| hidden_features = hidden_features or in_features | |
| self.hidden_features = hidden_features | |
| if padding is None: | |
| padding = get_same_padding(kernel_size) | |
| padding *= dilation | |
| self.conv = nn.Conv2d( | |
| hidden_features, | |
| hidden_features, | |
| kernel_size=(kernel_size, kernel_size), | |
| stride=(stride, stride), | |
| padding=padding, | |
| dilation=(dilation, dilation), | |
| groups=hidden_features, | |
| bias=bias, | |
| ) | |
| def forward(self, x, HW=None): | |
| B, N, C = x.shape | |
| if HW is None: | |
| H = W = int(N**0.5) | |
| else: | |
| H, W = HW | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop1(x) | |
| x = x.reshape(B, H, W, self.hidden_features).permute(0, 3, 1, 2) | |
| x = self.conv(x) | |
| x = x.reshape(B, self.hidden_features, N).permute(0, 2, 1) | |
| x = self.fc2(x) | |
| x = self.drop2(x) | |
| return x | |
| class Mlp(Mlp): | |
| """MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.0): | |
| super().__init__( | |
| in_features=in_features, | |
| hidden_features=hidden_features, | |
| out_features=out_features, | |
| act_layer=act_layer, | |
| bias=bias, | |
| drop=drop, | |
| ) | |
| def forward(self, x, HW=None): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop1(x) | |
| x = self.fc2(x) | |
| x = self.drop2(x) | |
| return x | |
| if __name__ == "__main__": | |
| model = GLUMBConv( | |
| 1152, | |
| 1152 * 4, | |
| 1152, | |
| use_bias=(True, True, False), | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| ).cuda() | |
| input = torch.randn(4, 256, 1152).cuda() | |
| output = model(input) | |