Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
| import os | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from timm.models.layers import DropPath | |
| from diffusion.model.builder import MODELS | |
| from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp | |
| from diffusion.model.nets.sana_blocks import ( | |
| Attention, | |
| CaptionEmbedder, | |
| FlashAttention, | |
| LiteLA, | |
| MultiHeadCrossAttention, | |
| PatchEmbed, | |
| T2IFinalLayer, | |
| TimestepEmbedder, | |
| t2i_modulate, | |
| ) | |
| from diffusion.model.norms import RMSNorm | |
| from diffusion.model.utils import auto_grad_checkpoint, to_2tuple | |
| from diffusion.utils.dist_utils import get_rank | |
| from diffusion.utils.import_utils import is_triton_module_available | |
| from diffusion.utils.logger import get_root_logger | |
| _triton_modules_available = False | |
| if is_triton_module_available(): | |
| from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU | |
| _triton_modules_available = True | |
| class SanaBlock(nn.Module): | |
| """ | |
| A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| drop_path=0, | |
| input_size=None, | |
| qk_norm=False, | |
| attn_type="flash", | |
| ffn_type="mlp", | |
| mlp_acts=("silu", "silu", None), | |
| linear_head_dim=32, | |
| **block_kwargs, | |
| ): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| if attn_type == "flash": | |
| # flash self attention | |
| self.attn = FlashAttention( | |
| hidden_size, | |
| num_heads=num_heads, | |
| qkv_bias=True, | |
| qk_norm=qk_norm, | |
| **block_kwargs, | |
| ) | |
| elif attn_type == "linear": | |
| # linear self attention | |
| # TODO: Here the num_heads set to 36 for tmp used | |
| self_num_heads = hidden_size // linear_head_dim | |
| self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm) | |
| elif attn_type == "triton_linear": | |
| if not _triton_modules_available: | |
| raise ValueError( | |
| f"{attn_type} type is not available due to _triton_modules_available={_triton_modules_available}." | |
| ) | |
| # linear self attention with triton kernel fusion | |
| # TODO: Here the num_heads set to 36 for tmp used | |
| self_num_heads = hidden_size // linear_head_dim | |
| self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8) | |
| elif attn_type == "vanilla": | |
| # vanilla self attention | |
| self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True) | |
| else: | |
| raise ValueError(f"{attn_type} type is not defined.") | |
| self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| # to be compatible with lower version pytorch | |
| if ffn_type == "dwmlp": | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = DWMlp( | |
| in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
| ) | |
| elif ffn_type == "glumbconv": | |
| self.mlp = GLUMBConv( | |
| in_features=hidden_size, | |
| hidden_features=int(hidden_size * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=(None, None, None), | |
| act=mlp_acts, | |
| ) | |
| elif ffn_type == "glumbconv_dilate": | |
| self.mlp = GLUMBConv( | |
| in_features=hidden_size, | |
| hidden_features=int(hidden_size * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=(None, None, None), | |
| act=mlp_acts, | |
| dilation=2, | |
| ) | |
| elif ffn_type == "mbconvpreglu": | |
| self.mlp = MBConvPreGLU( | |
| in_dim=hidden_size, | |
| out_dim=hidden_size, | |
| mid_dim=int(hidden_size * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=None, | |
| act=("silu", "silu", None), | |
| ) | |
| elif ffn_type == "triton_mbconvpreglu": | |
| if not _triton_modules_available: | |
| raise ValueError( | |
| f"{ffn_type} type is not available due to _triton_modules_available={_triton_modules_available}." | |
| ) | |
| self.mlp = TritonMBConvPreGLU( | |
| in_dim=hidden_size, | |
| out_dim=hidden_size, | |
| mid_dim=int(hidden_size * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=None, | |
| act=("silu", "silu", None), | |
| ) | |
| elif ffn_type == "mlp": | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = Mlp( | |
| in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
| ) | |
| else: | |
| raise ValueError(f"{ffn_type} type is not defined.") | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) | |
| def forward(self, x, y, t, mask=None, **kwargs): | |
| B, N, C = x.shape | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + t.reshape(B, 6, -1) | |
| ).chunk(6, dim=1) | |
| x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) | |
| x = x + self.cross_attn(x, y, mask) | |
| x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
| return x | |
| ############################################################################# | |
| # Core Sana Model # | |
| ################################################################################# | |
| class Sana(nn.Module): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| pred_sigma=True, | |
| drop_path: float = 0.0, | |
| caption_channels=2304, | |
| pe_interpolation=1.0, | |
| config=None, | |
| model_max_length=120, | |
| qk_norm=False, | |
| y_norm=False, | |
| norm_eps=1e-5, | |
| attn_type="flash", | |
| ffn_type="mlp", | |
| use_pe=True, | |
| y_norm_scale_factor=1.0, | |
| patch_embed_kernel=None, | |
| mlp_acts=("silu", "silu", None), | |
| linear_head_dim=32, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.pred_sigma = pred_sigma | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
| self.patch_size = patch_size | |
| self.num_heads = num_heads | |
| self.pe_interpolation = pe_interpolation | |
| self.depth = depth | |
| self.use_pe = use_pe | |
| self.y_norm = y_norm | |
| self.fp32_attention = kwargs.get("use_fp32_attention", False) | |
| kernel_size = patch_embed_kernel or patch_size | |
| self.x_embedder = PatchEmbed( | |
| input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True | |
| ) | |
| self.t_embedder = TimestepEmbedder(hidden_size) | |
| num_patches = self.x_embedder.num_patches | |
| self.base_size = input_size // self.patch_size | |
| # Will use fixed sin-cos embedding: | |
| self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
| self.y_embedder = CaptionEmbedder( | |
| in_channels=caption_channels, | |
| hidden_size=hidden_size, | |
| uncond_prob=class_dropout_prob, | |
| act_layer=approx_gelu, | |
| token_num=model_max_length, | |
| ) | |
| if self.y_norm: | |
| self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps) | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList( | |
| [ | |
| SanaBlock( | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| drop_path=drop_path[i], | |
| input_size=(input_size // patch_size, input_size // patch_size), | |
| qk_norm=qk_norm, | |
| attn_type=attn_type, | |
| ffn_type=ffn_type, | |
| mlp_acts=mlp_acts, | |
| linear_head_dim=linear_head_dim, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
| self.initialize_weights() | |
| if config: | |
| logger = get_root_logger(os.path.join(config.work_dir, "train_log.log")) | |
| logger = logger.warning | |
| else: | |
| logger = print | |
| if get_rank() == 0: | |
| logger( | |
| f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}" | |
| ) | |
| logger( | |
| f"attention type: {attn_type}; ffn type: {ffn_type}; " | |
| f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}" | |
| ) | |
| def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs): | |
| """ | |
| Forward pass of Sana. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| x = x.to(self.dtype) | |
| timestep = timestep.to(self.dtype) | |
| y = y.to(self.dtype) | |
| pos_embed = self.pos_embed.to(self.dtype) | |
| self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
| if self.use_pe: | |
| x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
| else: | |
| x = self.x_embedder(x) | |
| t = self.t_embedder(timestep.to(x.dtype)) # (N, D) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, 1, L, D) | |
| if self.y_norm: | |
| y = self.attention_y_norm(y) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| for block in self.blocks: | |
| x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| return x | |
| def __call__(self, *args, **kwargs): | |
| """ | |
| This method allows the object to be called like a function. | |
| It simply calls the forward method. | |
| """ | |
| return self.forward(*args, **kwargs) | |
| def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs): | |
| """ | |
| dpm solver donnot need variance prediction | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
| model_out = self.forward(x, timestep, y, mask) | |
| return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out | |
| def unpatchify(self, x): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.out_channels | |
| p = self.x_embedder.patch_size[0] | |
| h = w = int(x.shape[1] ** 0.5) | |
| assert h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
| x = torch.einsum("nhwpqc->nchpwq", x) | |
| imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) | |
| return imgs | |
| def initialize_weights(self): | |
| # Initialize transformer layers: | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| if self.use_pe: | |
| # Initialize (and freeze) pos_embed by sin-cos embedding: | |
| pos_embed = get_2d_sincos_pos_embed( | |
| self.pos_embed.shape[-1], | |
| int(self.x_embedder.num_patches**0.5), | |
| pe_interpolation=self.pe_interpolation, | |
| base_size=self.base_size, | |
| ) | |
| self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
| # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
| w = self.x_embedder.proj.weight.data | |
| nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
| nn.init.normal_(self.t_block[1].weight, std=0.02) | |
| # Initialize caption embedding MLP: | |
| nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | |
| nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | |
| def dtype(self): | |
| return next(self.parameters()).dtype | |
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16): | |
| """ | |
| grid_size: int of the grid height and width | |
| return: | |
| pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
| """ | |
| if isinstance(grid_size, int): | |
| grid_size = to_2tuple(grid_size) | |
| grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / pe_interpolation | |
| grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / pe_interpolation | |
| grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
| grid = np.stack(grid, axis=0) | |
| grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) | |
| pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
| if cls_token and extra_tokens > 0: | |
| pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
| return pos_embed | |
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
| assert embed_dim % 2 == 0 | |
| # use half of dimensions to encode grid_h | |
| emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
| emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
| emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
| return emb | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
| """ | |
| embed_dim: output dimension for each position | |
| pos: a list of positions to be encoded: size (M,) | |
| out: (M, D) | |
| """ | |
| assert embed_dim % 2 == 0 | |
| omega = np.arange(embed_dim // 2, dtype=np.float64) | |
| omega /= embed_dim / 2.0 | |
| omega = 1.0 / 10000**omega # (D/2,) | |
| pos = pos.reshape(-1) # (M,) | |
| out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
| emb_sin = np.sin(out) # (M, D/2) | |
| emb_cos = np.cos(out) # (M, D/2) | |
| emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
| return emb | |
| ################################################################################# | |
| # Sana Configs # | |
| ################################################################################# | |
| def Sana_600M_P1_D28(**kwargs): | |
| return Sana(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) | |
| def Sana_1600M_P1_D20(**kwargs): | |
| # 20 layers, 1648.48M | |
| return Sana(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs) | |