Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import copy | |
| import warnings | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn.modules.batchnorm import _BatchNorm | |
| __all__ = ["LayerNorm2d", "build_norm", "get_norm_name", "reset_bn", "remove_bn", "set_norm_eps"] | |
| class LayerNorm2d(nn.LayerNorm): | |
| rmsnorm = False | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| out = x if LayerNorm2d.rmsnorm else x - torch.mean(x, dim=1, keepdim=True) | |
| out = out / torch.sqrt(torch.square(out).mean(dim=1, keepdim=True) + self.eps) | |
| if self.elementwise_affine: | |
| out = out * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1) | |
| return out | |
| def extra_repr(self) -> str: | |
| return f"{self.normalized_shape}, eps={self.eps}, elementwise_affine={self.elementwise_affine}, rmsnorm={self.rmsnorm}" | |
| # register normalization function here | |
| # name: module, kwargs with default values | |
| REGISTERED_NORMALIZATION_DICT: dict[str, tuple[type, dict[str, any]]] = { | |
| "bn2d": (nn.BatchNorm2d, {"num_features": None, "eps": 1e-5, "momentum": 0.1, "affine": True}), | |
| "syncbn": (nn.SyncBatchNorm, {"num_features": None, "eps": 1e-5, "momentum": 0.1, "affine": True}), | |
| "ln": (nn.LayerNorm, {"normalized_shape": None, "eps": 1e-5, "elementwise_affine": True}), | |
| "ln2d": (LayerNorm2d, {"normalized_shape": None, "eps": 1e-5, "elementwise_affine": True}), | |
| } | |
| def build_norm(name="bn2d", num_features=None, affine=True, **kwargs) -> nn.Module or None: | |
| if name in ["ln", "ln2d"]: | |
| kwargs["normalized_shape"] = num_features | |
| kwargs["elementwise_affine"] = affine | |
| else: | |
| kwargs["num_features"] = num_features | |
| kwargs["affine"] = affine | |
| if name in REGISTERED_NORMALIZATION_DICT: | |
| norm_cls, default_args = copy.deepcopy(REGISTERED_NORMALIZATION_DICT[name]) | |
| for key in default_args: | |
| if key in kwargs: | |
| default_args[key] = kwargs[key] | |
| return norm_cls(**default_args) | |
| elif name is None or name.lower() == "none": | |
| return None | |
| else: | |
| raise ValueError("do not support: %s" % name) | |
| def get_norm_name(norm: nn.Module or None) -> str or None: | |
| if norm is None: | |
| return None | |
| module2name = {} | |
| for key, config in REGISTERED_NORMALIZATION_DICT.items(): | |
| module2name[config[0].__name__] = key | |
| return module2name.get(type(norm).__name__, "unknown") | |
| def reset_bn( | |
| model: nn.Module, | |
| data_loader: list, | |
| sync=True, | |
| progress_bar=False, | |
| ) -> None: | |
| import copy | |
| import torch.nn.functional as F | |
| from packages.apps.utils import AverageMeter, is_master, sync_tensor | |
| from packages.models.utils import get_device, list_join | |
| from tqdm import tqdm | |
| bn_mean = {} | |
| bn_var = {} | |
| tmp_model = copy.deepcopy(model) | |
| for name, m in tmp_model.named_modules(): | |
| if isinstance(m, _BatchNorm): | |
| bn_mean[name] = AverageMeter(is_distributed=False) | |
| bn_var[name] = AverageMeter(is_distributed=False) | |
| def new_forward(bn, mean_est, var_est): | |
| def lambda_forward(x): | |
| x = x.contiguous() | |
| if sync: | |
| batch_mean = x.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True) # 1, C, 1, 1 | |
| batch_mean = sync_tensor(batch_mean, reduce="cat") | |
| batch_mean = torch.mean(batch_mean, dim=0, keepdim=True) | |
| batch_var = (x - batch_mean) * (x - batch_mean) | |
| batch_var = batch_var.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True) | |
| batch_var = sync_tensor(batch_var, reduce="cat") | |
| batch_var = torch.mean(batch_var, dim=0, keepdim=True) | |
| else: | |
| batch_mean = x.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True) # 1, C, 1, 1 | |
| batch_var = (x - batch_mean) * (x - batch_mean) | |
| batch_var = batch_var.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True) | |
| batch_mean = torch.squeeze(batch_mean) | |
| batch_var = torch.squeeze(batch_var) | |
| mean_est.update(batch_mean.data, x.size(0)) | |
| var_est.update(batch_var.data, x.size(0)) | |
| # bn forward using calculated mean & var | |
| _feature_dim = batch_mean.shape[0] | |
| return F.batch_norm( | |
| x, | |
| batch_mean, | |
| batch_var, | |
| bn.weight[:_feature_dim], | |
| bn.bias[:_feature_dim], | |
| False, | |
| 0.0, | |
| bn.eps, | |
| ) | |
| return lambda_forward | |
| m.forward = new_forward(m, bn_mean[name], bn_var[name]) | |
| # skip if there is no batch normalization layers in the network | |
| if len(bn_mean) == 0: | |
| return | |
| tmp_model.eval() | |
| with torch.inference_mode(): | |
| with tqdm(total=len(data_loader), desc="reset bn", disable=not progress_bar or not is_master()) as t: | |
| for images in data_loader: | |
| images = images.to(get_device(tmp_model)) | |
| tmp_model(images) | |
| t.set_postfix( | |
| { | |
| "bs": images.size(0), | |
| "res": list_join(images.shape[-2:], "x"), | |
| } | |
| ) | |
| t.update() | |
| for name, m in model.named_modules(): | |
| if name in bn_mean and bn_mean[name].count > 0: | |
| feature_dim = bn_mean[name].avg.size(0) | |
| assert isinstance(m, _BatchNorm) | |
| m.running_mean.data[:feature_dim].copy_(bn_mean[name].avg) | |
| m.running_var.data[:feature_dim].copy_(bn_var[name].avg) | |
| def remove_bn(model: nn.Module) -> None: | |
| for m in model.modules(): | |
| if isinstance(m, _BatchNorm): | |
| m.weight = m.bias = None | |
| m.forward = lambda x: x | |
| def set_norm_eps(model: nn.Module, eps: float or None = None, momentum: float or None = None) -> None: | |
| for m in model.modules(): | |
| if isinstance(m, (nn.GroupNorm, nn.LayerNorm, _BatchNorm)): | |
| if eps is not None: | |
| m.eps = eps | |
| if momentum is not None: | |
| m.momentum = momentum | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6): | |
| """ | |
| Initialize the RMSNorm normalization layer. | |
| Args: | |
| dim (int): The dimension of the input tensor. | |
| eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
| Attributes: | |
| eps (float): A small value added to the denominator for numerical stability. | |
| weight (nn.Parameter): Learnable scaling parameter. | |
| """ | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim) * scale_factor) | |
| def _norm(self, x): | |
| """ | |
| Apply the RMSNorm normalization to the input tensor. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The normalized tensor. | |
| """ | |
| return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
| def forward(self, x): | |
| """ | |
| Forward pass through the RMSNorm layer. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The output tensor after applying RMSNorm. | |
| """ | |
| return (self.weight * self._norm(x.float())).type_as(x) | |