Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import os | |
| import random | |
| import re | |
| import numpy as np | |
| import torch | |
| from diffusion.utils.logger import get_root_logger | |
| from tools.download import find_model | |
| def save_checkpoint( | |
| work_dir, | |
| epoch, | |
| model, | |
| model_ema=None, | |
| optimizer=None, | |
| lr_scheduler=None, | |
| generator=torch.Generator(device="cpu").manual_seed(42), | |
| keep_last=False, | |
| step=None, | |
| add_symlink=False, | |
| ): | |
| os.makedirs(work_dir, exist_ok=True) | |
| state_dict = dict(state_dict=model.state_dict()) | |
| if model_ema is not None: | |
| state_dict["state_dict_ema"] = model_ema.state_dict() | |
| if optimizer is not None: | |
| state_dict["optimizer"] = optimizer.state_dict() | |
| if lr_scheduler is not None: | |
| state_dict["scheduler"] = lr_scheduler.state_dict() | |
| if epoch is not None: | |
| state_dict["epoch"] = epoch | |
| file_path = os.path.join(work_dir, f"epoch_{epoch}.pth") | |
| if step is not None: | |
| file_path = file_path.split(".pth")[0] + f"_step_{step}.pth" | |
| rng_state = { | |
| "torch": torch.get_rng_state(), | |
| "torch_cuda": torch.cuda.get_rng_state_all(), | |
| "numpy": np.random.get_state(), | |
| "python": random.getstate(), | |
| "generator": generator.get_state(), | |
| } | |
| state_dict["rng_state"] = rng_state | |
| logger = get_root_logger() | |
| torch.save(state_dict, file_path) | |
| logger.info(f"Saved checkpoint of epoch {epoch} to {file_path.format(epoch)}.") | |
| if keep_last: | |
| for i in range(epoch): | |
| previous_ckgt = file_path.format(i) | |
| if os.path.exists(previous_ckgt): | |
| os.remove(previous_ckgt) | |
| if add_symlink: | |
| link_path = os.path.join(os.path.dirname(file_path), "latest.pth") | |
| if os.path.exists(link_path) or os.path.islink(link_path): | |
| os.remove(link_path) | |
| os.symlink(os.path.abspath(file_path), link_path) | |
| return file_path | |
| def load_checkpoint( | |
| checkpoint, | |
| model, | |
| model_ema=None, | |
| optimizer=None, | |
| lr_scheduler=None, | |
| load_ema=False, | |
| resume_optimizer=True, | |
| resume_lr_scheduler=True, | |
| null_embed_path=None, | |
| ): | |
| assert isinstance(checkpoint, str) | |
| logger = get_root_logger() | |
| ckpt_file = checkpoint | |
| checkpoint = find_model(ckpt_file) | |
| state_dict_keys = ["pos_embed", "base_model.pos_embed", "model.pos_embed"] | |
| for key in state_dict_keys: | |
| if key in checkpoint["state_dict"]: | |
| del checkpoint["state_dict"][key] | |
| if "state_dict_ema" in checkpoint and key in checkpoint["state_dict_ema"]: | |
| del checkpoint["state_dict_ema"][key] | |
| break | |
| if load_ema: | |
| state_dict = checkpoint["state_dict_ema"] | |
| else: | |
| state_dict = checkpoint.get("state_dict", checkpoint) # to be compatible with the official checkpoint | |
| null_embed = torch.load(null_embed_path, map_location="cpu") | |
| state_dict["y_embedder.y_embedding"] = null_embed["uncond_prompt_embeds"][0] | |
| rng_state = checkpoint.get("rng_state", None) | |
| missing, unexpect = model.load_state_dict(state_dict, strict=False) | |
| if model_ema is not None: | |
| model_ema.load_state_dict(checkpoint["state_dict_ema"], strict=False) | |
| if optimizer is not None and resume_optimizer: | |
| optimizer.load_state_dict(checkpoint["optimizer"]) | |
| if lr_scheduler is not None and resume_lr_scheduler: | |
| lr_scheduler.load_state_dict(checkpoint["scheduler"]) | |
| epoch = 0 | |
| if optimizer is not None: | |
| epoch = checkpoint.get("epoch", re.match(r".*epoch_(\d*).*.pth", ckpt_file).group()[0]) | |
| logger.info( | |
| f"Resume checkpoint of epoch {epoch} from {ckpt_file}. Load ema: {load_ema}, " | |
| f"resume optimizer: {resume_optimizer}, resume lr scheduler: {resume_lr_scheduler}." | |
| ) | |
| return epoch, missing, unexpect, rng_state | |
| logger.info(f"Load checkpoint from {ckpt_file}. Load ema: {load_ema}.") | |
| return epoch, missing, unexpect, rng_state | |