Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import math | |
| from diffusers import get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup | |
| from torch.optim import Optimizer | |
| from torch.optim.lr_scheduler import LambdaLR | |
| from diffusion.utils.logger import get_root_logger | |
| def build_lr_scheduler(config, optimizer, train_dataloader, lr_scale_ratio): | |
| if not config.get("lr_schedule_args", None): | |
| config.lr_schedule_args = dict() | |
| if config.get("lr_warmup_steps", None): | |
| config["num_warmup_steps"] = config.get("lr_warmup_steps") # for compatibility with old version | |
| logger = get_root_logger() | |
| logger.info( | |
| f"Lr schedule: {config.lr_schedule}, " | |
| + ",".join([f"{key}:{value}" for key, value in config.lr_schedule_args.items()]) | |
| + "." | |
| ) | |
| if config.lr_schedule == "cosine": | |
| lr_scheduler = get_cosine_schedule_with_warmup( | |
| optimizer=optimizer, | |
| **config.lr_schedule_args, | |
| num_training_steps=(len(train_dataloader) * config.num_epochs), | |
| ) | |
| elif config.lr_schedule == "constant": | |
| lr_scheduler = get_constant_schedule_with_warmup( | |
| optimizer=optimizer, | |
| **config.lr_schedule_args, | |
| ) | |
| elif config.lr_schedule == "cosine_decay_to_constant": | |
| assert lr_scale_ratio >= 1 | |
| lr_scheduler = get_cosine_decay_to_constant_with_warmup( | |
| optimizer=optimizer, | |
| **config.lr_schedule_args, | |
| final_lr=1 / lr_scale_ratio, | |
| num_training_steps=(len(train_dataloader) * config.num_epochs), | |
| ) | |
| else: | |
| raise RuntimeError(f"Unrecognized lr schedule {config.lr_schedule}.") | |
| return lr_scheduler | |
| def get_cosine_decay_to_constant_with_warmup( | |
| optimizer: Optimizer, | |
| num_warmup_steps: int, | |
| num_training_steps: int, | |
| final_lr: float = 0.0, | |
| num_decay: float = 0.667, | |
| num_cycles: float = 0.5, | |
| last_epoch: int = -1, | |
| ): | |
| """ | |
| Create a schedule with a cosine annealing lr followed by a constant lr. | |
| Args: | |
| optimizer ([`~torch.optim.Optimizer`]): | |
| The optimizer for which to schedule the learning rate. | |
| num_warmup_steps (`int`): | |
| The number of steps for the warmup phase. | |
| num_training_steps (`int`): | |
| The number of total training steps. | |
| final_lr (`int`): | |
| The final constant lr after cosine decay. | |
| num_decay (`int`): | |
| The | |
| last_epoch (`int`, *optional*, defaults to -1): | |
| The index of the last epoch when resuming training. | |
| Return: | |
| `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
| """ | |
| def lr_lambda(current_step): | |
| if current_step < num_warmup_steps: | |
| return float(current_step) / float(max(1, num_warmup_steps)) | |
| num_decay_steps = int(num_training_steps * num_decay) | |
| if current_step > num_decay_steps: | |
| return final_lr | |
| progress = float(current_step - num_warmup_steps) / float(max(1, num_decay_steps - num_warmup_steps)) | |
| return ( | |
| max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) * (1 - final_lr) + final_lr | |
| ) | |
| return LambdaLR(optimizer, lr_lambda, last_epoch) | |