Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import os.path as osp | |
| import sys | |
| import time | |
| import warnings | |
| from collections import defaultdict | |
| from pathlib import Path | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| from accelerate import Accelerator | |
| from accelerate.utils import gather_object | |
| from PIL import Image | |
| from tqdm import tqdm | |
| warnings.filterwarnings("ignore") # ignore warning | |
| current_file_path = Path(__file__).resolve() | |
| sys.path.insert(0, str(current_file_path.parent.parent.parent.parent)) | |
| from tools.metrics.utils import tracker | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="DPG-Bench evaluation.") | |
| parser.add_argument("--image-root-path", type=str, default=None) | |
| parser.add_argument("--exp_name", type=str, default="Sana") | |
| parser.add_argument("--txt_path", type=str, default=None) | |
| parser.add_argument("--sample_nums", type=int, default=1065) | |
| parser.add_argument("--resolution", type=int, default=None) | |
| parser.add_argument("--csv", type=str, default="tools/metrics/dpg_bench/dpg_bench.csv") | |
| parser.add_argument("--res-path", type=str, default=None) | |
| parser.add_argument("--pic-num", type=int, default=1) | |
| parser.add_argument("--vqa-model", type=str, default="mplug") | |
| # online logging setting | |
| parser.add_argument("--log_metric", type=str, default="metric") | |
| parser.add_argument("--gpu_id", type=int, default=0) | |
| parser.add_argument("--log_dpg", action="store_true") | |
| parser.add_argument("--suffix_label", type=str, default="", help="used for image-reward online log") | |
| parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for image-reward online log") | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default=None, | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="t2i-evit-baseline", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--name", | |
| type=str, | |
| default="baseline", | |
| help=("Wandb Project Name"), | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| class MPLUG(torch.nn.Module): | |
| def __init__(self, ckpt="damo/mplug_visual-question-answering_coco_large_en", device="gpu"): | |
| super().__init__() | |
| from modelscope.pipelines import pipeline | |
| from modelscope.utils.constant import Tasks | |
| self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device) | |
| def vqa(self, image, question): | |
| input_vqa = {"image": image, "question": question} | |
| result = self.pipeline_vqa(input_vqa) | |
| return result["text"] | |
| def prepare_dpg_data(args): | |
| previous_id = "" | |
| current_id = "" | |
| question_dict = dict() | |
| category_count = defaultdict(int) | |
| # 'item_id', 'text', 'keywords', 'proposition_id', 'dependency', 'category_broad', 'category_detailed', 'tuple', 'question_natural_language' | |
| data = pd.read_csv(args.csv) | |
| for i, line in data.iterrows(): | |
| if i == 0: | |
| continue | |
| current_id = line.item_id | |
| qid = int(line.proposition_id) | |
| dependency_list_str = line.dependency.split(",") | |
| dependency_list_int = [] | |
| for d in dependency_list_str: | |
| d_int = int(d.strip()) | |
| dependency_list_int.append(d_int) | |
| if current_id == previous_id: | |
| question_dict[current_id]["qid2tuple"][qid] = line.tuple | |
| question_dict[current_id]["qid2dependency"][qid] = dependency_list_int | |
| question_dict[current_id]["qid2question"][qid] = line.question_natural_language | |
| else: | |
| question_dict[current_id] = dict( | |
| qid2tuple={qid: line.tuple}, | |
| qid2dependency={qid: dependency_list_int}, | |
| qid2question={qid: line.question_natural_language}, | |
| ) | |
| category = line.question_natural_language.split("(")[0].strip() | |
| category_count[category] += 1 | |
| previous_id = current_id | |
| return question_dict | |
| def crop_image(input_image, crop_tuple=None): | |
| if crop_tuple is None: | |
| return input_image | |
| cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3])) | |
| return cropped_image | |
| def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution): | |
| generated_image = Image.open(image_path) | |
| crop_tuples_list = [ | |
| (0, 0, resolution, resolution), | |
| (resolution, 0, resolution * 2, resolution), | |
| (0, resolution, resolution, resolution * 2), | |
| (resolution, resolution, resolution * 2, resolution * 2), | |
| ] | |
| crop_tuples = crop_tuples_list[: args.pic_num] | |
| key = osp.basename(image_path).split(".")[0] | |
| value = question_dict.get(key, None) | |
| qid2tuple = value["qid2tuple"] | |
| qid2question = value["qid2question"] | |
| qid2dependency = value["qid2dependency"] | |
| qid2answer = dict() | |
| qid2scores = dict() | |
| qid2validity = dict() | |
| scores = [] | |
| for crop_tuple in crop_tuples: | |
| cropped_image = crop_image(generated_image, crop_tuple) | |
| for id, question in qid2question.items(): | |
| answer = vqa_model.vqa(cropped_image, question) | |
| qid2answer[id] = answer | |
| qid2scores[id] = float(answer == "yes") | |
| with open(args.res_path.replace(".txt", "_detail.txt"), "a") as f: | |
| f.write(image_path + ", " + str(crop_tuple) + ", " + question + ", " + answer + "\n") | |
| qid2scores_orig = qid2scores.copy() | |
| for id, parent_ids in qid2dependency.items(): | |
| # zero-out scores if parent questions are answered 'no' | |
| any_parent_answered_no = False | |
| for parent_id in parent_ids: | |
| if parent_id == 0: | |
| continue | |
| if qid2scores[parent_id] == 0: | |
| any_parent_answered_no = True | |
| break | |
| if any_parent_answered_no: | |
| qid2scores[id] = 0 | |
| qid2validity[id] = False | |
| else: | |
| qid2validity[id] = True | |
| score = sum(qid2scores.values()) / len(qid2scores) | |
| scores.append(score) | |
| average_score = sum(scores) / len(scores) | |
| with open(args.res_path, "a") as f: | |
| f.write(image_path + ", " + ", ".join(str(i) for i in scores) + ", " + str(average_score) + "\n") | |
| return average_score, qid2tuple, qid2scores_orig | |
| def main(): | |
| accelerator = Accelerator() | |
| question_dict = prepare_dpg_data(args) | |
| txt_path = args.txt_path if args.txt_path is not None else args.image_root_path | |
| args.image_root_path = osp.join(args.image_root_path, args.exp_name) | |
| sample_nums = args.sample_nums | |
| args.res_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results.txt") | |
| save_txt_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results_simple.txt") | |
| if os.path.exists(save_txt_path): | |
| with open(save_txt_path) as f: | |
| dpg_value = f.readlines()[0].strip() | |
| print(f"DPG-Bench: {dpg_value}: {args.exp_name}") | |
| return {args.exp_name: float(dpg_value)} | |
| if accelerator.is_main_process: | |
| with open(args.res_path, "w") as f: | |
| pass | |
| with open(args.res_path.replace(".txt", "_detail.txt"), "w") as f: | |
| pass | |
| device = str(accelerator.device) | |
| if args.vqa_model == "mplug": | |
| vqa_model = MPLUG(device=device) | |
| else: | |
| raise NotImplementedError | |
| vqa_model = accelerator.prepare(vqa_model) | |
| vqa_model = getattr(vqa_model, "module", vqa_model) | |
| filename_list = os.listdir(args.image_root_path) | |
| num_each_rank = len(filename_list) / accelerator.num_processes | |
| local_rank = accelerator.process_index | |
| local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)] | |
| local_scores = [] | |
| local_category2scores = defaultdict(list) | |
| model_id = osp.basename(args.image_root_path) | |
| print(f"Start to conduct evaluation of {model_id}") | |
| for fn in tqdm(local_filename_list): | |
| image_path = osp.join(args.image_root_path, fn) | |
| try: | |
| # compute score of one sample | |
| score, qid2tuple, qid2scores = compute_dpg_one_sample( | |
| args=args, | |
| question_dict=question_dict, | |
| image_path=image_path, | |
| vqa_model=vqa_model, | |
| resolution=args.resolution, | |
| ) | |
| local_scores.append(score) | |
| # summarize scores by categoris | |
| for qid in qid2tuple.keys(): | |
| category = qid2tuple[qid].split("(")[0].strip() | |
| qid_score = qid2scores[qid] | |
| local_category2scores[category].append(qid_score) | |
| except Exception as e: | |
| print("Failed filename:", fn, e) | |
| continue | |
| accelerator.wait_for_everyone() | |
| global_dpg_scores = gather_object(local_scores) | |
| mean_dpg_score = np.mean(global_dpg_scores) | |
| global_categories = gather_object(list(local_category2scores.keys())) | |
| global_categories = set(global_categories) | |
| global_category2scores = dict() | |
| global_average_scores = [] | |
| for category in global_categories: | |
| local_category_scores = local_category2scores.get(category, []) | |
| global_category2scores[category] = gather_object(local_category_scores) | |
| global_average_scores.extend(gather_object(local_category_scores)) | |
| global_category2scores_l1 = defaultdict(list) | |
| for category in global_categories: | |
| l1_category = category.split("-")[0].strip() | |
| global_category2scores_l1[l1_category].extend(global_category2scores[category]) | |
| time.sleep(3) | |
| if accelerator.is_main_process: | |
| output = f"Model: {model_id}\n" | |
| output += "L1 category scores:\n" | |
| for l1_category in global_category2scores_l1.keys(): | |
| output += f"\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n" | |
| output += "L2 category scores:\n" | |
| for category in sorted(global_categories): | |
| output += f"\t{category}: {np.mean(global_category2scores[category]) * 100}\n" | |
| output += f"Image path: {args.image_root_path}\n" | |
| output += f"Save results to: {args.res_path}\n" | |
| output += f"DPG-Bench score: {mean_dpg_score * 100}" | |
| with open(args.res_path, "a") as f: | |
| f.write(output + "\n") | |
| print(output) | |
| if accelerator.is_main_process: | |
| with open(save_txt_path, "w") as file: | |
| file.write(str(mean_dpg_score * 100)) | |
| return {args.exp_name: mean_dpg_score * 100} | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name) | |
| dpg_result = main() | |
| if args.log_dpg: | |
| tracker(args, dpg_result, args.suffix_label, pattern=args.tracker_pattern, metric="DPG") | |