Commit
·
22df562
1
Parent(s):
057702d
updated demo
Browse files- .gitignore +26 -0
- app.py +196 -498
- demo.py +56 -0
- requirements.txt +4 -0
- requirements_local.txt +3 -0
- results/sample_submission/metadata.json +9 -0
- sample_bulk_submission.json → results/sample_submission/sample_bulk_submission.json +0 -0
- results/sample_submission2/metadata.json +9 -0
- results/sample_submission2/results.json +1292 -0
- src/__init__.py +21 -0
- src/about.py +109 -0
- src/display/css_html_js.py +24 -0
- src/display/utils.py +68 -0
- src/envs.py +24 -0
- src/load_results.py +285 -0
- src/populate.py +63 -0
- src/utils.py +91 -0
.gitignore
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
uv.lock
|
| 2 |
+
test_local.py
|
| 3 |
+
test_visualization.py
|
| 4 |
+
pyproject.toml
|
| 5 |
+
|
| 6 |
+
# Python cache files
|
| 7 |
+
__pycache__/
|
| 8 |
+
*.py[cod]
|
| 9 |
+
*$py.class
|
| 10 |
+
*.so
|
| 11 |
+
.Python
|
| 12 |
+
build/
|
| 13 |
+
develop-eggs/
|
| 14 |
+
dist/
|
| 15 |
+
downloads/
|
| 16 |
+
eggs/
|
| 17 |
+
.eggs/
|
| 18 |
+
lib/
|
| 19 |
+
lib64/
|
| 20 |
+
parts/
|
| 21 |
+
sdist/
|
| 22 |
+
var/
|
| 23 |
+
wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
app.py
CHANGED
|
@@ -1,530 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
import json
|
| 4 |
-
import os
|
| 5 |
-
from datetime import datetime
|
| 6 |
-
from typing import Dict, List, Any
|
| 7 |
-
import numpy as np
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
return data.get("results", [])
|
| 18 |
-
|
| 19 |
-
# Load sample data from bulk submission file
|
| 20 |
-
sample_file = "sample_bulk_submission.json"
|
| 21 |
-
if os.path.exists(sample_file):
|
| 22 |
-
with open(sample_file, 'r') as f:
|
| 23 |
-
sample_data = json.load(f)
|
| 24 |
-
# Convert bulk submission format to results format
|
| 25 |
-
results = []
|
| 26 |
-
for entry in sample_data:
|
| 27 |
-
result = {
|
| 28 |
-
"model": "EXAMPLE",
|
| 29 |
-
"submitter": "Research Team",
|
| 30 |
-
"submission_date": "2025-10-09",
|
| 31 |
-
"metrics": entry["metrics"],
|
| 32 |
-
"task": "multivariate_forecasting",
|
| 33 |
-
"domain": entry["domain"],
|
| 34 |
-
"category": entry["category"],
|
| 35 |
-
"dataset": entry["dataset"],
|
| 36 |
-
"dataset_version": entry["dataset_version"],
|
| 37 |
-
"paper_url": "https://example.com/paper1",
|
| 38 |
-
"code_url": "https://github.com/example/repo1"
|
| 39 |
-
}
|
| 40 |
-
results.append(result)
|
| 41 |
-
return results
|
| 42 |
-
|
| 43 |
-
# Fallback empty results
|
| 44 |
-
return []
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
def
|
| 54 |
-
|
| 55 |
-
if not results:
|
| 56 |
-
return pd.DataFrame()
|
| 57 |
-
|
| 58 |
-
# Extract metrics and create flattened structure
|
| 59 |
-
flattened_results = []
|
| 60 |
-
for result in results:
|
| 61 |
-
metrics = result["metrics"]
|
| 62 |
-
row = {
|
| 63 |
-
"Rank": 0, # Will be calculated
|
| 64 |
-
"Model": result["model"],
|
| 65 |
-
"Submitter": result["submitter"],
|
| 66 |
-
"Submission Date": result["submission_date"],
|
| 67 |
-
"MAE": f"{metrics['MAE']:.3f}",
|
| 68 |
-
"Uni-MAE": f"{metrics.get('Uni-MAE', 0):.3f}",
|
| 69 |
-
"RMSE": f"{metrics['RMSE']:.3f}",
|
| 70 |
-
"MAPE": f"{metrics['MAPE']:.1f}%",
|
| 71 |
-
"R²": f"{metrics['R²']:.3f}",
|
| 72 |
-
"SMAPE": f"{metrics['SMAPE']:.1f}%",
|
| 73 |
-
"Uni-Multi": f"{metrics.get('Uni-Multi', 0):.3f}",
|
| 74 |
-
"Task": result["task"],
|
| 75 |
-
"Domain": result.get("domain", "general"),
|
| 76 |
-
"Category": result.get("category", "traditional"),
|
| 77 |
-
"Dataset": result.get("dataset", "MUSED-FM"),
|
| 78 |
-
"Dataset Version": result["dataset_version"]
|
| 79 |
-
}
|
| 80 |
-
flattened_results.append(row)
|
| 81 |
-
|
| 82 |
-
# Sort by MAE (lower is better) and assign ranks
|
| 83 |
-
flattened_results.sort(key=lambda x: float(x["MAE"]))
|
| 84 |
-
for i, row in enumerate(flattened_results):
|
| 85 |
-
row["Rank"] = i + 1
|
| 86 |
-
|
| 87 |
-
return pd.DataFrame(flattened_results)
|
| 88 |
|
| 89 |
-
def
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Validate inputs
|
| 95 |
-
if not model_name or not submitter_name:
|
| 96 |
-
return "❌ Model name and submitter name are required!"
|
| 97 |
-
|
| 98 |
-
if mae <= 0 or uni_mae <= 0 or rmse <= 0 or mape < 0 or r2 < 0 or smape < 0 or uni_multi <= 0:
|
| 99 |
-
return "❌ All metrics must be positive values!"
|
| 100 |
-
|
| 101 |
-
# Load existing results
|
| 102 |
-
results = load_results()
|
| 103 |
-
|
| 104 |
-
# Check if model already exists
|
| 105 |
-
for result in results:
|
| 106 |
-
if result["model"].lower() == model_name.lower():
|
| 107 |
-
return f"❌ Model '{model_name}' already exists in the leaderboard!"
|
| 108 |
-
|
| 109 |
-
# Create new submission
|
| 110 |
-
new_submission = {
|
| 111 |
-
"model": model_name,
|
| 112 |
-
"submitter": submitter_name,
|
| 113 |
-
"submission_date": datetime.now().strftime("%Y-%m-%d"),
|
| 114 |
-
"metrics": {
|
| 115 |
-
"MAE": float(mae),
|
| 116 |
-
"Uni-MAE": float(uni_mae),
|
| 117 |
-
"RMSE": float(rmse),
|
| 118 |
-
"MAPE": float(mape),
|
| 119 |
-
"R²": float(r2),
|
| 120 |
-
"SMAPE": float(smape),
|
| 121 |
-
"Uni-Multi": float(uni_multi)
|
| 122 |
-
},
|
| 123 |
-
"task": task,
|
| 124 |
-
"domain": domain,
|
| 125 |
-
"category": category,
|
| 126 |
-
"dataset": dataset,
|
| 127 |
-
"dataset_version": dataset_version,
|
| 128 |
-
"paper_url": paper_url,
|
| 129 |
-
"code_url": code_url
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
# Add to results
|
| 133 |
-
results.append(new_submission)
|
| 134 |
-
save_results(results)
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def update_leaderboard_by_domain(domain: str = "all"):
|
| 142 |
-
"""Update the leaderboard display filtered by domain"""
|
| 143 |
-
results = load_results()
|
| 144 |
-
if domain != "all":
|
| 145 |
-
results = [r for r in results if r.get("domain", "general") == domain]
|
| 146 |
-
df = create_leaderboard_df(results)
|
| 147 |
-
return df
|
| 148 |
-
|
| 149 |
-
def update_leaderboard_by_category(category: str = "all"):
|
| 150 |
-
"""Update the leaderboard display filtered by category"""
|
| 151 |
-
results = load_results()
|
| 152 |
-
if category != "all":
|
| 153 |
-
results = [r for r in results if r.get("category", "traditional") == category]
|
| 154 |
-
df = create_leaderboard_df(results)
|
| 155 |
-
return df
|
| 156 |
-
|
| 157 |
-
def update_leaderboard_overall(domain_filter: str = "all", category_filter: str = "all", dataset_filter: str = "all"):
|
| 158 |
-
"""Update the overall leaderboard display with optional filtering"""
|
| 159 |
-
results = load_results()
|
| 160 |
-
|
| 161 |
-
# Apply filters
|
| 162 |
-
if domain_filter != "all":
|
| 163 |
-
results = [r for r in results if r.get("domain", "general") == domain_filter]
|
| 164 |
-
if category_filter != "all":
|
| 165 |
-
results = [r for r in results if r.get("category", "traditional") == category_filter]
|
| 166 |
-
if dataset_filter != "all":
|
| 167 |
-
results = [r for r in results if r.get("dataset", "MUSED-FM") == dataset_filter]
|
| 168 |
-
|
| 169 |
-
df = create_leaderboard_df(results)
|
| 170 |
-
return df
|
| 171 |
-
|
| 172 |
-
def get_domains():
|
| 173 |
-
"""Get list of available domains"""
|
| 174 |
-
results = load_results()
|
| 175 |
-
domains = list(set([r.get("domain", "general") for r in results]))
|
| 176 |
-
return ["all"] + sorted(domains)
|
| 177 |
-
|
| 178 |
-
def get_datasets():
|
| 179 |
-
"""Get list of available datasets"""
|
| 180 |
-
results = load_results()
|
| 181 |
-
datasets = list(set([r.get("dataset", "MUSED-FM") for r in results]))
|
| 182 |
-
return ["all"] + sorted(datasets)
|
| 183 |
-
|
| 184 |
-
def get_categories():
|
| 185 |
-
"""Get list of available categories"""
|
| 186 |
-
results = load_results()
|
| 187 |
-
categories = list(set([r.get("category", "traditional") for r in results]))
|
| 188 |
-
return ["all"] + sorted(categories)
|
| 189 |
-
|
| 190 |
-
def get_datasets_by_domain_category(domain: str, category: str):
|
| 191 |
-
"""Get datasets filtered by domain and category"""
|
| 192 |
-
results = load_results()
|
| 193 |
-
filtered_results = [r for r in results if
|
| 194 |
-
(domain == "all" or r.get("domain", "general") == domain) and
|
| 195 |
-
(category == "all" or r.get("category", "traditional") == category)]
|
| 196 |
-
datasets = list(set([r.get("dataset", "MUSED-FM") for r in filtered_results]))
|
| 197 |
-
return ["all"] + sorted(datasets)
|
| 198 |
-
|
| 199 |
-
def submit_bulk_results(model_name: str, submitter_name: str, results_data: str, paper_url: str, code_url: str) -> str:
|
| 200 |
-
"""Handle bulk submission of results for multiple domain/dataset combinations"""
|
| 201 |
-
try:
|
| 202 |
-
import json
|
| 203 |
-
# Parse the bulk results data
|
| 204 |
-
bulk_data = json.loads(results_data)
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
"
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
)
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
|
| 249 |
-
save_results(existing_results)
|
| 250 |
-
return f"✅ Successfully submitted {added_count} result entries for model '{model_name}'!"
|
| 251 |
-
else:
|
| 252 |
-
return "❌ No new results were added. Check for duplicates or invalid data."
|
| 253 |
-
|
| 254 |
-
except json.JSONDecodeError:
|
| 255 |
-
return "❌ Invalid JSON format in bulk results data!"
|
| 256 |
-
except Exception as e:
|
| 257 |
-
return f"❌ Error submitting bulk results: {str(e)}"
|
| 258 |
-
|
| 259 |
-
# Create the Gradio interface
|
| 260 |
-
with gr.Blocks(title="MUSED-FM Leaderboard", theme=gr.themes.Soft()) as demo:
|
| 261 |
-
gr.Markdown("""
|
| 262 |
-
# 🏆 MUSED-FM Leaderboard
|
| 263 |
-
|
| 264 |
-
Welcome to the MUSED-FM (Multivariate Time Series Dataset) Leaderboard! This leaderboard tracks the performance of different models on multivariate time series forecasting tasks across various domains and datasets.
|
| 265 |
-
|
| 266 |
-
## 📊 Evaluation Metrics
|
| 267 |
-
- **MAE**: Mean Absolute Error (lower is better)
|
| 268 |
-
- **Uni-MAE**: Univariate Mean Absolute Error (lower is better)
|
| 269 |
-
- **RMSE**: Root Mean Square Error (lower is better)
|
| 270 |
-
- **MAPE**: Mean Absolute Percentage Error (lower is better)
|
| 271 |
-
- **R²**: Coefficient of Determination (higher is better)
|
| 272 |
-
- **SMAPE**: Symmetric Mean Absolute Percentage Error (lower is better)
|
| 273 |
-
- **Uni-Multi**: Univariate-Multivariate comparison metric (lower is better)
|
| 274 |
-
|
| 275 |
-
## 🎯 Tasks
|
| 276 |
-
- **multivariate_forecasting**: Multivariate time series forecasting
|
| 277 |
-
|
| 278 |
-
## 🌐 Domains & Categories
|
| 279 |
-
- **Causal Model** (synthetic): Synthetic causal modeling datasets
|
| 280 |
-
- **Dynamic** (synthetic): Dynamic system datasets
|
| 281 |
-
- **Energy** (traditional): Energy consumption and production
|
| 282 |
-
- **Engineering** (traditional): Engineering sensor data
|
| 283 |
-
- **Environment** (traditional): Environmental monitoring
|
| 284 |
-
- **Finance** (traditional): Financial time series
|
| 285 |
-
- **Health** (traditional): Medical and health data
|
| 286 |
-
- **Image** (sequential): Image-based time series
|
| 287 |
-
- **Public Info** (traditional): Public information datasets
|
| 288 |
-
- **Sales** (traditional): Sales and pricing data
|
| 289 |
-
- **Scientific** (sequential): Scientific simulation data
|
| 290 |
-
- **Stock** (collections): Stock market data
|
| 291 |
-
- **Text** (sequential): Text-based time series
|
| 292 |
-
- **Video** (sequential): Video-based time series
|
| 293 |
-
- **Web** (traditional): Web analytics data
|
| 294 |
-
- **Wikipedia** (collections): Wikipedia usage data
|
| 295 |
-
""")
|
| 296 |
-
|
| 297 |
-
with gr.Tab("📈 Overall Leaderboard"):
|
| 298 |
with gr.Row():
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
value=
|
| 302 |
-
label="Filter by Domain",
|
| 303 |
-
interactive=True
|
| 304 |
-
)
|
| 305 |
-
category_filter = gr.Dropdown(
|
| 306 |
-
choices=get_categories(),
|
| 307 |
-
value="all",
|
| 308 |
-
label="Filter by Category",
|
| 309 |
-
interactive=True
|
| 310 |
-
)
|
| 311 |
-
dataset_filter = gr.Dropdown(
|
| 312 |
-
choices=get_datasets(),
|
| 313 |
-
value="all",
|
| 314 |
-
label="Filter by Dataset",
|
| 315 |
-
interactive=True
|
| 316 |
-
)
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
interactive=False,
|
| 323 |
-
label="MUSED-FM Overall Leaderboard"
|
| 324 |
-
)
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
datatype=["number", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str"],
|
| 340 |
-
interactive=False,
|
| 341 |
-
label="Domain-Specific Leaderboard"
|
| 342 |
-
)
|
| 343 |
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
with gr.Tab("📂 By Category"):
|
| 348 |
-
gr.Markdown("### Performance by Category")
|
| 349 |
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
label="Category-Specific Leaderboard"
|
| 356 |
)
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
gr.Markdown("### Performance by Dataset")
|
| 363 |
-
|
| 364 |
-
dataset_leaderboard = gr.Dataframe(
|
| 365 |
-
value=update_leaderboard_by_dataset(),
|
| 366 |
-
headers=["Rank", "Model", "Submitter", "Submission Date", "MAE", "Uni-MAE", "RMSE", "MAPE", "R²", "SMAPE", "Uni-Multi", "Task", "Domain", "Category", "Dataset Version"],
|
| 367 |
-
datatype=["number", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str"],
|
| 368 |
-
interactive=False,
|
| 369 |
-
label="Dataset-Specific Leaderboard"
|
| 370 |
)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
gr.Markdown("### Submit Your Model Results")
|
| 377 |
-
|
| 378 |
-
with gr.Row():
|
| 379 |
-
with gr.Column():
|
| 380 |
-
model_name = gr.Textbox(label="Model Name", placeholder="e.g., MyTimeSeriesModel")
|
| 381 |
-
submitter_name = gr.Textbox(label="Submitter Name", placeholder="Your name or organization")
|
| 382 |
-
|
| 383 |
-
gr.Markdown("### Performance Metrics")
|
| 384 |
-
mae = gr.Number(label="MAE (Mean Absolute Error)", precision=3)
|
| 385 |
-
uni_mae = gr.Number(label="Uni-MAE (Univariate MAE)", precision=3)
|
| 386 |
-
rmse = gr.Number(label="RMSE (Root Mean Square Error)", precision=3)
|
| 387 |
-
mape = gr.Number(label="MAPE (Mean Absolute Percentage Error)", precision=1)
|
| 388 |
-
r2 = gr.Number(label="R² (Coefficient of Determination)", precision=3)
|
| 389 |
-
smape = gr.Number(label="SMAPE (Symmetric MAPE)", precision=1)
|
| 390 |
-
uni_multi = gr.Number(label="Uni-Multi (Univariate-Multivariate)", precision=3)
|
| 391 |
-
|
| 392 |
-
with gr.Column():
|
| 393 |
-
task = gr.Dropdown(
|
| 394 |
-
choices=["multivariate_forecasting"],
|
| 395 |
-
value="multivariate_forecasting",
|
| 396 |
-
label="Task"
|
| 397 |
-
)
|
| 398 |
-
domain = gr.Dropdown(
|
| 399 |
-
choices=["Causal Model", "Dynamic", "Energy", "Engineering", "Environment", "Finance", "Health", "Image", "Public Info", "Sales", "Scientific", "Stock", "Text", "Video", "Web", "Wikipedia"],
|
| 400 |
-
value="Energy",
|
| 401 |
-
label="Domain"
|
| 402 |
-
)
|
| 403 |
-
category = gr.Dropdown(
|
| 404 |
-
choices=["synthetic", "traditional", "sequential", "collections"],
|
| 405 |
-
value="traditional",
|
| 406 |
-
label="Category"
|
| 407 |
-
)
|
| 408 |
-
dataset = gr.Textbox(label="Dataset Name", placeholder="e.g., ecl, fred_md1, large_convlag_synin_s")
|
| 409 |
-
dataset_version = gr.Textbox(label="Dataset Version", value="v1.0")
|
| 410 |
-
paper_url = gr.Textbox(label="Paper URL (optional)", placeholder="https://arxiv.org/abs/...")
|
| 411 |
-
code_url = gr.Textbox(label="Code URL (optional)", placeholder="https://github.com/...")
|
| 412 |
-
|
| 413 |
-
submit_btn = gr.Button("🚀 Submit Model", variant="primary")
|
| 414 |
-
submission_status = gr.Textbox(label="Submission Status", interactive=False)
|
| 415 |
-
|
| 416 |
-
submit_btn.click(
|
| 417 |
-
fn=submit_model,
|
| 418 |
-
inputs=[model_name, submitter_name, mae, uni_mae, rmse, mape, r2, smape, uni_multi, task, domain, category, dataset, dataset_version, paper_url, code_url],
|
| 419 |
-
outputs=submission_status
|
| 420 |
)
|
| 421 |
-
|
| 422 |
-
with gr.Tab("📦 Bulk Submit"):
|
| 423 |
-
gr.Markdown("### Bulk Submit Results for Multiple Domain/Dataset Combinations")
|
| 424 |
-
gr.Markdown("""
|
| 425 |
-
**Format**: Submit a JSON array of results. Each entry should contain:
|
| 426 |
-
```json
|
| 427 |
-
[
|
| 428 |
-
{
|
| 429 |
-
"domain": "Energy",
|
| 430 |
-
"category": "traditional",
|
| 431 |
-
"dataset": "ecl",
|
| 432 |
-
"dataset_version": "v1.0",
|
| 433 |
-
"metrics": {
|
| 434 |
-
"MAE": 10.0,
|
| 435 |
-
"Uni-MAE": 20.0,
|
| 436 |
-
"RMSE": 10.0,
|
| 437 |
-
"MAPE": 10.0,
|
| 438 |
-
"R²": 10.0,
|
| 439 |
-
"SMAPE": 10.0,
|
| 440 |
-
"Uni-Multi": 10.0
|
| 441 |
-
}
|
| 442 |
-
}
|
| 443 |
-
]
|
| 444 |
-
```
|
| 445 |
-
""")
|
| 446 |
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
placeholder="Paste your JSON array here...",
|
| 452 |
-
lines=10
|
| 453 |
)
|
| 454 |
-
bulk_paper_url = gr.Textbox(label="Paper URL (optional)", placeholder="https://arxiv.org/abs/...")
|
| 455 |
-
bulk_code_url = gr.Textbox(label="Code URL (optional)", placeholder="https://github.com/...")
|
| 456 |
-
|
| 457 |
-
bulk_submit_btn = gr.Button("📦 Submit Bulk Results", variant="primary")
|
| 458 |
-
bulk_submission_status = gr.Textbox(label="Bulk Submission Status", interactive=False)
|
| 459 |
|
| 460 |
-
|
| 461 |
-
fn=
|
| 462 |
-
inputs=[
|
| 463 |
-
outputs=
|
| 464 |
)
|
| 465 |
-
|
| 466 |
-
with gr.Tab("📋 Dataset Info"):
|
| 467 |
-
gr.Markdown("""
|
| 468 |
-
## MUSED-FM Dataset Information
|
| 469 |
-
|
| 470 |
-
### Overview
|
| 471 |
-
MUSED-FM is a comprehensive multivariate time series dataset designed for forecasting tasks. The dataset contains multiple time series with various characteristics and complexities.
|
| 472 |
-
|
| 473 |
-
### Dataset Characteristics
|
| 474 |
-
- **Type**: Multivariate Time Series
|
| 475 |
-
- **Domain**: General forecasting tasks
|
| 476 |
-
- **Features**: Multiple variables per time series
|
| 477 |
-
- **Temporal Resolution**: Various (hourly, daily, etc.)
|
| 478 |
-
|
| 479 |
-
### Evaluation Protocol
|
| 480 |
-
1. Models are evaluated on held-out test sets
|
| 481 |
-
2. Standard train/validation/test splits are provided
|
| 482 |
-
3. Multiple evaluation metrics are used for comprehensive assessment
|
| 483 |
-
4. Results should be reproducible and include proper citations
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
- Follow ethical AI practices
|
| 490 |
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
total_models = len(results)
|
| 504 |
-
avg_mae = np.mean([r["metrics"]["MAE"] for r in results])
|
| 505 |
-
avg_rmse = np.mean([r["metrics"]["RMSE"] for r in results])
|
| 506 |
-
avg_r2 = np.mean([r["metrics"]["R²"] for r in results])
|
| 507 |
-
|
| 508 |
-
best_mae = min([r["metrics"]["MAE"] for r in results])
|
| 509 |
-
best_r2 = max([r["metrics"]["R²"] for r in results])
|
| 510 |
-
|
| 511 |
-
stats_text = f"""
|
| 512 |
-
**Total Submissions**: {total_models}
|
| 513 |
-
|
| 514 |
-
**Average Performance**:
|
| 515 |
-
- MAE: {avg_mae:.3f}
|
| 516 |
-
- RMSE: {avg_rmse:.3f}
|
| 517 |
-
- R²: {avg_r2:.3f}
|
| 518 |
-
|
| 519 |
-
**Best Performance**:
|
| 520 |
-
- Best MAE: {best_mae:.3f}
|
| 521 |
-
- Best R²: {best_r2:.3f}
|
| 522 |
-
"""
|
| 523 |
-
return stats_text
|
| 524 |
-
|
| 525 |
-
stats_display = gr.Markdown(value=get_stats())
|
| 526 |
-
refresh_stats_btn = gr.Button("🔄 Refresh Statistics")
|
| 527 |
-
refresh_stats_btn.click(fn=get_stats, outputs=stats_display)
|
| 528 |
|
|
|
|
| 529 |
if __name__ == "__main__":
|
| 530 |
-
demo
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MUSED-FM Leaderboard - Main Gradio Application
|
| 3 |
+
Following GIFT-Eval import structure with custom layout
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Optional imports for production features
|
| 10 |
+
try:
|
| 11 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
+
SCHEDULER_AVAILABLE = True
|
| 13 |
+
except ImportError:
|
| 14 |
+
SCHEDULER_AVAILABLE = False
|
| 15 |
+
print("Warning: apscheduler not available, scheduler features disabled")
|
| 16 |
|
| 17 |
+
try:
|
| 18 |
+
from huggingface_hub import snapshot_download
|
| 19 |
+
HUB_AVAILABLE = True
|
| 20 |
+
except ImportError:
|
| 21 |
+
HUB_AVAILABLE = False
|
| 22 |
+
print("Warning: huggingface_hub not available, hub features disabled")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
from src.about import (
|
| 25 |
+
CITATION_BUTTON_LABEL,
|
| 26 |
+
CITATION_BUTTON_TEXT,
|
| 27 |
+
EVALUATION_QUEUE_TEXT,
|
| 28 |
+
INTRODUCTION_TEXT,
|
| 29 |
+
LLM_BENCHMARKS_TEXT,
|
| 30 |
+
TITLE,
|
| 31 |
+
)
|
| 32 |
+
from src.display.css_html_js import custom_css
|
| 33 |
+
from src.display.utils import (
|
| 34 |
+
BENCHMARK_COLS,
|
| 35 |
+
EVAL_COLS,
|
| 36 |
+
EVAL_TYPES,
|
| 37 |
+
ModelInfoColumn,
|
| 38 |
+
ModelType,
|
| 39 |
+
fields,
|
| 40 |
+
WeightType,
|
| 41 |
+
Precision
|
| 42 |
+
)
|
| 43 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 44 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df
|
| 45 |
+
from src.utils import norm_sNavie, pivot_df, get_grouped_dfs, pivot_existed_df, rename_metrics, format_df
|
| 46 |
+
from src.load_results import (
|
| 47 |
+
load_results_with_metadata,
|
| 48 |
+
create_overall_table,
|
| 49 |
+
get_filter_options,
|
| 50 |
+
get_model_metadata,
|
| 51 |
+
create_model_metadata_display,
|
| 52 |
+
get_overall_summary
|
| 53 |
+
)
|
| 54 |
|
| 55 |
+
def restart_space():
|
| 56 |
+
API.restart_space(repo_id=REPO_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
def create_leaderboard_interface():
|
| 59 |
+
"""Create the main leaderboard interface"""
|
| 60 |
+
demo = gr.Blocks(css=custom_css)
|
| 61 |
+
with demo:
|
| 62 |
+
gr.HTML(TITLE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Minimizable description section
|
| 65 |
+
with gr.Accordion("📖 Description", open=False):
|
| 66 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 67 |
|
| 68 |
+
# Get filter options
|
| 69 |
+
filter_options = get_filter_options()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# Main content area
|
| 72 |
+
with gr.Row():
|
| 73 |
+
with gr.Column(scale=1):
|
| 74 |
+
# Individual minimizable filter sections
|
| 75 |
+
with gr.Accordion("🔍 Model Search", open=False):
|
| 76 |
+
model_search = gr.Textbox(
|
| 77 |
+
label="Model Search",
|
| 78 |
+
placeholder="Search for a specific model...",
|
| 79 |
+
info="Type part of a model name to filter"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
with gr.Accordion("📂 Category Filter", open=False):
|
| 83 |
+
category_radio = gr.Radio(
|
| 84 |
+
choices=filter_options["categories"],
|
| 85 |
+
value="all",
|
| 86 |
+
label="Category",
|
| 87 |
+
info="Filter by category"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
with gr.Accordion("🌐 Domain Filter", open=False):
|
| 91 |
+
domain_radio = gr.Radio(
|
| 92 |
+
choices=filter_options["domains"],
|
| 93 |
+
value="all",
|
| 94 |
+
label="Domain",
|
| 95 |
+
info="Filter by domain"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
with gr.Accordion("📊 Dataset Filter", open=False):
|
| 99 |
+
dataset_radio = gr.Radio(
|
| 100 |
+
choices=filter_options["datasets"],
|
| 101 |
+
value="all",
|
| 102 |
+
label="Dataset",
|
| 103 |
+
info="Filter by dataset"
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
clear_filters_btn = gr.Button("🗑️ Clear All Filters", variant="secondary")
|
|
|
|
| 107 |
|
| 108 |
+
with gr.Column(scale=3):
|
| 109 |
+
gr.Markdown("### 📋 Model Rankings")
|
| 110 |
+
|
| 111 |
+
# Main results table
|
| 112 |
+
results_table = gr.Dataframe(
|
| 113 |
+
value=create_overall_table(),
|
| 114 |
+
headers=["Rank", "Model", "Organization", "Datasets", "Domains", "Categories",
|
| 115 |
+
"MAE", "Uni-MAE", "RMSE", "MAPE", "R²", "SMAPE", "Uni-Multi", "Submission Date"],
|
| 116 |
+
datatype=["number", "str", "str", "number", "number", "number",
|
| 117 |
+
"str", "str", "str", "str", "str", "str", "str", "str"],
|
| 118 |
+
interactive=False,
|
| 119 |
+
label="Overall Rankings",
|
| 120 |
+
wrap=True,
|
| 121 |
+
elem_classes=["elegant-table"]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
refresh_btn = gr.Button("🔄 Refresh Table", variant="primary")
|
| 125 |
+
|
| 126 |
+
# Model metadata section at bottom
|
| 127 |
+
with gr.Accordion("🔍 Model Inspector", open=False):
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column(scale=1):
|
| 130 |
+
model_selector = gr.Dropdown(
|
| 131 |
+
choices=filter_options["models"],
|
| 132 |
+
value=None,
|
| 133 |
+
label="Select Model",
|
| 134 |
+
info="Choose a model to view its metadata",
|
| 135 |
+
allow_custom_value=False
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
with gr.Column(scale=3):
|
| 139 |
+
metadata_display = gr.Markdown(
|
| 140 |
+
value="Select a model to view its metadata.",
|
| 141 |
+
label="Model Metadata"
|
| 142 |
+
)
|
| 143 |
|
| 144 |
+
# Summary statistics section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
with gr.Row():
|
| 146 |
+
with gr.Column():
|
| 147 |
+
gr.Markdown("### 📈 Summary Statistics")
|
| 148 |
+
summary_text = gr.Markdown(value=get_overall_summary())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
# About section
|
| 151 |
+
with gr.Tabs():
|
| 152 |
+
with gr.Tab("📖 About"):
|
| 153 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# Citation section
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 158 |
+
citation_button = gr.Textbox(
|
| 159 |
+
value=CITATION_BUTTON_TEXT,
|
| 160 |
+
label=CITATION_BUTTON_LABEL,
|
| 161 |
+
lines=20,
|
| 162 |
+
elem_id="citation-button",
|
| 163 |
+
show_copy_button=True,
|
| 164 |
+
)
|
| 165 |
|
| 166 |
+
# Event handlers
|
| 167 |
+
def update_table(domain, category, dataset, model):
|
| 168 |
+
return create_overall_table(domain, category, dataset, model)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
def clear_filters():
|
| 171 |
+
return "all", "all", "all", ""
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
# Connect filters to table updates
|
| 174 |
+
domain_radio.change(
|
| 175 |
+
fn=update_table,
|
| 176 |
+
inputs=[domain_radio, category_radio, dataset_radio, model_search],
|
| 177 |
+
outputs=results_table
|
|
|
|
| 178 |
)
|
| 179 |
|
| 180 |
+
category_radio.change(
|
| 181 |
+
fn=update_table,
|
| 182 |
+
inputs=[domain_radio, category_radio, dataset_radio, model_search],
|
| 183 |
+
outputs=results_table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
)
|
| 185 |
|
| 186 |
+
dataset_radio.change(
|
| 187 |
+
fn=update_table,
|
| 188 |
+
inputs=[domain_radio, category_radio, dataset_radio, model_search],
|
| 189 |
+
outputs=results_table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
model_search.change(
|
| 193 |
+
fn=update_table,
|
| 194 |
+
inputs=[domain_radio, category_radio, dataset_radio, model_search],
|
| 195 |
+
outputs=results_table
|
|
|
|
|
|
|
| 196 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
refresh_btn.click(
|
| 199 |
+
fn=update_table,
|
| 200 |
+
inputs=[domain_radio, category_radio, dataset_radio, model_search],
|
| 201 |
+
outputs=results_table
|
| 202 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
clear_filters_btn.click(
|
| 205 |
+
fn=clear_filters,
|
| 206 |
+
outputs=[domain_radio, category_radio, dataset_radio, model_search]
|
| 207 |
+
)
|
|
|
|
| 208 |
|
| 209 |
+
# Model selector event handler
|
| 210 |
+
model_selector.change(
|
| 211 |
+
fn=create_model_metadata_display,
|
| 212 |
+
inputs=[model_selector],
|
| 213 |
+
outputs=[metadata_display]
|
| 214 |
+
)
|
| 215 |
|
| 216 |
+
return demo
|
| 217 |
+
|
| 218 |
+
# Start scheduler if available
|
| 219 |
+
if SCHEDULER_AVAILABLE:
|
| 220 |
+
scheduler = BackgroundScheduler()
|
| 221 |
+
scheduler.start()
|
| 222 |
+
else:
|
| 223 |
+
scheduler = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
+
# Launch the demo
|
| 226 |
if __name__ == "__main__":
|
| 227 |
+
demo = create_leaderboard_interface()
|
| 228 |
+
demo.queue(default_concurrency_limit=40).launch()
|
demo.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MUSED-FM Leaderboard - Local Demo
|
| 3 |
+
Imports from app.py to ensure identical functionality, loads a local demo leaderboard
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import json
|
| 9 |
+
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from typing import Dict, List, Any
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
# Import from our src package
|
| 15 |
+
from src.load_results import (
|
| 16 |
+
load_results_with_metadata,
|
| 17 |
+
create_overall_table,
|
| 18 |
+
get_filter_options,
|
| 19 |
+
get_model_metadata,
|
| 20 |
+
create_model_metadata_display,
|
| 21 |
+
get_overall_summary
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Import the main interface function from app.py
|
| 25 |
+
from app import create_leaderboard_interface
|
| 26 |
+
|
| 27 |
+
# Create the demo using the same function as app.py
|
| 28 |
+
demo = create_leaderboard_interface()
|
| 29 |
+
|
| 30 |
+
# Launch the demo
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
print("🎨 MUSED-FM Leaderboard Local Demo")
|
| 33 |
+
print("=" * 50)
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
print("📊 Loading data...")
|
| 37 |
+
results = load_results_with_metadata()
|
| 38 |
+
print(f"✅ Loaded {len(results)} results")
|
| 39 |
+
|
| 40 |
+
print("🏗️ Creating interface...")
|
| 41 |
+
print("🚀 Starting local leaderboard...")
|
| 42 |
+
print("📊 Access at: http://localhost:7860")
|
| 43 |
+
print("🔄 Press Ctrl+C to stop")
|
| 44 |
+
|
| 45 |
+
demo.launch(
|
| 46 |
+
server_name="0.0.0.0",
|
| 47 |
+
server_port=7860,
|
| 48 |
+
share=False,
|
| 49 |
+
show_error=True,
|
| 50 |
+
quiet=False
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"❌ Error: {e}")
|
| 55 |
+
import traceback
|
| 56 |
+
traceback.print_exc()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,8 @@
|
|
| 1 |
gradio==5.49.0
|
|
|
|
| 2 |
pandas>=1.5.0
|
| 3 |
numpy>=1.21.0
|
|
|
|
|
|
|
|
|
|
| 4 |
json5>=0.9.0
|
|
|
|
| 1 |
gradio==5.49.0
|
| 2 |
+
gradio-leaderboard
|
| 3 |
pandas>=1.5.0
|
| 4 |
numpy>=1.21.0
|
| 5 |
+
plotly
|
| 6 |
+
apscheduler
|
| 7 |
+
huggingface-hub
|
| 8 |
json5>=0.9.0
|
requirements_local.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
pandas>=1.5.0
|
| 3 |
+
numpy>=1.21.0
|
results/sample_submission/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "EXAMPLE",
|
| 3 |
+
"submitter": "Research Team",
|
| 4 |
+
"submission_date": "2025-10-09",
|
| 5 |
+
"task": "multivariate_forecasting",
|
| 6 |
+
"dataset_version": "v1.0",
|
| 7 |
+
"paper_url": "https://example.com/paper1",
|
| 8 |
+
"code_url": "https://github.com/example/repo1"
|
| 9 |
+
}
|
sample_bulk_submission.json → results/sample_submission/sample_bulk_submission.json
RENAMED
|
File without changes
|
results/sample_submission2/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "EXAMPLE2",
|
| 3 |
+
"submitter": "Research Team",
|
| 4 |
+
"submission_date": "2025-10-09",
|
| 5 |
+
"task": "multivariate_forecasting",
|
| 6 |
+
"dataset_version": "v1.0",
|
| 7 |
+
"paper_url": "https://example.com/paper2",
|
| 8 |
+
"code_url": "https://github.com/example/repo2"
|
| 9 |
+
}
|
results/sample_submission2/results.json
ADDED
|
@@ -0,0 +1,1292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"domain": "Causal Model",
|
| 4 |
+
"category": "synthetic",
|
| 5 |
+
"dataset": "large_convlag_synin_s",
|
| 6 |
+
"dataset_version": "v1.0",
|
| 7 |
+
"metrics": {
|
| 8 |
+
"MAE": 15.0,
|
| 9 |
+
"Uni-MAE": 25.0,
|
| 10 |
+
"RMSE": 15.0,
|
| 11 |
+
"MAPE": 15.0,
|
| 12 |
+
"R\u00b2": 15.0,
|
| 13 |
+
"SMAPE": 15.0,
|
| 14 |
+
"Uni-Multi": 15.0
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"domain": "Causal Model",
|
| 19 |
+
"category": "synthetic",
|
| 20 |
+
"dataset": "medium_convlag_synin_s",
|
| 21 |
+
"dataset_version": "v1.0",
|
| 22 |
+
"metrics": {
|
| 23 |
+
"MAE": 15.0,
|
| 24 |
+
"Uni-MAE": 25.0,
|
| 25 |
+
"RMSE": 15.0,
|
| 26 |
+
"MAPE": 15.0,
|
| 27 |
+
"R\u00b2": 15.0,
|
| 28 |
+
"SMAPE": 15.0,
|
| 29 |
+
"Uni-Multi": 15.0
|
| 30 |
+
}
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"domain": "Causal Model",
|
| 34 |
+
"category": "synthetic",
|
| 35 |
+
"dataset": "medium_obslag_synin_s",
|
| 36 |
+
"dataset_version": "v1.0",
|
| 37 |
+
"metrics": {
|
| 38 |
+
"MAE": 15.0,
|
| 39 |
+
"Uni-MAE": 25.0,
|
| 40 |
+
"RMSE": 15.0,
|
| 41 |
+
"MAPE": 15.0,
|
| 42 |
+
"R\u00b2": 15.0,
|
| 43 |
+
"SMAPE": 15.0,
|
| 44 |
+
"Uni-Multi": 15.0
|
| 45 |
+
}
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"domain": "Causal Model",
|
| 49 |
+
"category": "synthetic",
|
| 50 |
+
"dataset": "tiny_convlag_synin_ns",
|
| 51 |
+
"dataset_version": "v1.0",
|
| 52 |
+
"metrics": {
|
| 53 |
+
"MAE": 15.0,
|
| 54 |
+
"Uni-MAE": 25.0,
|
| 55 |
+
"RMSE": 15.0,
|
| 56 |
+
"MAPE": 15.0,
|
| 57 |
+
"R\u00b2": 15.0,
|
| 58 |
+
"SMAPE": 15.0,
|
| 59 |
+
"Uni-Multi": 15.0
|
| 60 |
+
}
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"domain": "Causal Model",
|
| 64 |
+
"category": "synthetic",
|
| 65 |
+
"dataset": "tiny_obslag_synin_ns",
|
| 66 |
+
"dataset_version": "v1.0",
|
| 67 |
+
"metrics": {
|
| 68 |
+
"MAE": 15.0,
|
| 69 |
+
"Uni-MAE": 25.0,
|
| 70 |
+
"RMSE": 15.0,
|
| 71 |
+
"MAPE": 15.0,
|
| 72 |
+
"R\u00b2": 15.0,
|
| 73 |
+
"SMAPE": 15.0,
|
| 74 |
+
"Uni-Multi": 15.0
|
| 75 |
+
}
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"domain": "Dynamic",
|
| 79 |
+
"category": "synthetic",
|
| 80 |
+
"dataset": "dynamic_data_csvs",
|
| 81 |
+
"dataset_version": "v1.0",
|
| 82 |
+
"metrics": {
|
| 83 |
+
"MAE": 15.0,
|
| 84 |
+
"Uni-MAE": 25.0,
|
| 85 |
+
"RMSE": 15.0,
|
| 86 |
+
"MAPE": 15.0,
|
| 87 |
+
"R\u00b2": 15.0,
|
| 88 |
+
"SMAPE": 15.0,
|
| 89 |
+
"Uni-Multi": 15.0
|
| 90 |
+
}
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"domain": "Energy",
|
| 94 |
+
"category": "traditional",
|
| 95 |
+
"dataset": "al_daily",
|
| 96 |
+
"dataset_version": "v1.0",
|
| 97 |
+
"metrics": {
|
| 98 |
+
"MAE": 15.0,
|
| 99 |
+
"Uni-MAE": 25.0,
|
| 100 |
+
"RMSE": 15.0,
|
| 101 |
+
"MAPE": 15.0,
|
| 102 |
+
"R\u00b2": 15.0,
|
| 103 |
+
"SMAPE": 15.0,
|
| 104 |
+
"Uni-Multi": 15.0
|
| 105 |
+
}
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"domain": "Energy",
|
| 109 |
+
"category": "traditional",
|
| 110 |
+
"dataset": "aus_electricity_nsw",
|
| 111 |
+
"dataset_version": "v1.0",
|
| 112 |
+
"metrics": {
|
| 113 |
+
"MAE": 15.0,
|
| 114 |
+
"Uni-MAE": 25.0,
|
| 115 |
+
"RMSE": 15.0,
|
| 116 |
+
"MAPE": 15.0,
|
| 117 |
+
"R\u00b2": 15.0,
|
| 118 |
+
"SMAPE": 15.0,
|
| 119 |
+
"Uni-Multi": 15.0
|
| 120 |
+
}
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"domain": "Energy",
|
| 124 |
+
"category": "traditional",
|
| 125 |
+
"dataset": "aus_electricity_qld",
|
| 126 |
+
"dataset_version": "v1.0",
|
| 127 |
+
"metrics": {
|
| 128 |
+
"MAE": 15.0,
|
| 129 |
+
"Uni-MAE": 25.0,
|
| 130 |
+
"RMSE": 15.0,
|
| 131 |
+
"MAPE": 15.0,
|
| 132 |
+
"R\u00b2": 15.0,
|
| 133 |
+
"SMAPE": 15.0,
|
| 134 |
+
"Uni-Multi": 15.0
|
| 135 |
+
}
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"domain": "Energy",
|
| 139 |
+
"category": "traditional",
|
| 140 |
+
"dataset": "az_daily",
|
| 141 |
+
"dataset_version": "v1.0",
|
| 142 |
+
"metrics": {
|
| 143 |
+
"MAE": 15.0,
|
| 144 |
+
"Uni-MAE": 25.0,
|
| 145 |
+
"RMSE": 15.0,
|
| 146 |
+
"MAPE": 15.0,
|
| 147 |
+
"R\u00b2": 15.0,
|
| 148 |
+
"SMAPE": 15.0,
|
| 149 |
+
"Uni-Multi": 15.0
|
| 150 |
+
}
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"domain": "Energy",
|
| 154 |
+
"category": "traditional",
|
| 155 |
+
"dataset": "az_electricity",
|
| 156 |
+
"dataset_version": "v1.0",
|
| 157 |
+
"metrics": {
|
| 158 |
+
"MAE": 15.0,
|
| 159 |
+
"Uni-MAE": 25.0,
|
| 160 |
+
"RMSE": 15.0,
|
| 161 |
+
"MAPE": 15.0,
|
| 162 |
+
"R\u00b2": 15.0,
|
| 163 |
+
"SMAPE": 15.0,
|
| 164 |
+
"Uni-Multi": 15.0
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"domain": "Energy",
|
| 169 |
+
"category": "traditional",
|
| 170 |
+
"dataset": "cal_daily",
|
| 171 |
+
"dataset_version": "v1.0",
|
| 172 |
+
"metrics": {
|
| 173 |
+
"MAE": 15.0,
|
| 174 |
+
"Uni-MAE": 25.0,
|
| 175 |
+
"RMSE": 15.0,
|
| 176 |
+
"MAPE": 15.0,
|
| 177 |
+
"R\u00b2": 15.0,
|
| 178 |
+
"SMAPE": 15.0,
|
| 179 |
+
"Uni-Multi": 15.0
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"domain": "Energy",
|
| 184 |
+
"category": "traditional",
|
| 185 |
+
"dataset": "cal_electricity",
|
| 186 |
+
"dataset_version": "v1.0",
|
| 187 |
+
"metrics": {
|
| 188 |
+
"MAE": 15.0,
|
| 189 |
+
"Uni-MAE": 25.0,
|
| 190 |
+
"RMSE": 15.0,
|
| 191 |
+
"MAPE": 15.0,
|
| 192 |
+
"R\u00b2": 15.0,
|
| 193 |
+
"SMAPE": 15.0,
|
| 194 |
+
"Uni-Multi": 15.0
|
| 195 |
+
}
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"domain": "Energy",
|
| 199 |
+
"category": "traditional",
|
| 200 |
+
"dataset": "car_daily",
|
| 201 |
+
"dataset_version": "v1.0",
|
| 202 |
+
"metrics": {
|
| 203 |
+
"MAE": 15.0,
|
| 204 |
+
"Uni-MAE": 25.0,
|
| 205 |
+
"RMSE": 15.0,
|
| 206 |
+
"MAPE": 15.0,
|
| 207 |
+
"R\u00b2": 15.0,
|
| 208 |
+
"SMAPE": 15.0,
|
| 209 |
+
"Uni-Multi": 15.0
|
| 210 |
+
}
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"domain": "Energy",
|
| 214 |
+
"category": "traditional",
|
| 215 |
+
"dataset": "car_electricity",
|
| 216 |
+
"dataset_version": "v1.0",
|
| 217 |
+
"metrics": {
|
| 218 |
+
"MAE": 15.0,
|
| 219 |
+
"Uni-MAE": 25.0,
|
| 220 |
+
"RMSE": 15.0,
|
| 221 |
+
"MAPE": 15.0,
|
| 222 |
+
"R\u00b2": 15.0,
|
| 223 |
+
"SMAPE": 15.0,
|
| 224 |
+
"Uni-Multi": 15.0
|
| 225 |
+
}
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"domain": "Energy",
|
| 229 |
+
"category": "traditional",
|
| 230 |
+
"dataset": "central_electricity",
|
| 231 |
+
"dataset_version": "v1.0",
|
| 232 |
+
"metrics": {
|
| 233 |
+
"MAE": 15.0,
|
| 234 |
+
"Uni-MAE": 25.0,
|
| 235 |
+
"RMSE": 15.0,
|
| 236 |
+
"MAPE": 15.0,
|
| 237 |
+
"R\u00b2": 15.0,
|
| 238 |
+
"SMAPE": 15.0,
|
| 239 |
+
"Uni-Multi": 15.0
|
| 240 |
+
}
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"domain": "Energy",
|
| 244 |
+
"category": "traditional",
|
| 245 |
+
"dataset": "co_daily",
|
| 246 |
+
"dataset_version": "v1.0",
|
| 247 |
+
"metrics": {
|
| 248 |
+
"MAE": 15.0,
|
| 249 |
+
"Uni-MAE": 25.0,
|
| 250 |
+
"RMSE": 15.0,
|
| 251 |
+
"MAPE": 15.0,
|
| 252 |
+
"R\u00b2": 15.0,
|
| 253 |
+
"SMAPE": 15.0,
|
| 254 |
+
"Uni-Multi": 15.0
|
| 255 |
+
}
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"domain": "Energy",
|
| 259 |
+
"category": "traditional",
|
| 260 |
+
"dataset": "eastern_electricity",
|
| 261 |
+
"dataset_version": "v1.0",
|
| 262 |
+
"metrics": {
|
| 263 |
+
"MAE": 15.0,
|
| 264 |
+
"Uni-MAE": 25.0,
|
| 265 |
+
"RMSE": 15.0,
|
| 266 |
+
"MAPE": 15.0,
|
| 267 |
+
"R\u00b2": 15.0,
|
| 268 |
+
"SMAPE": 15.0,
|
| 269 |
+
"Uni-Multi": 15.0
|
| 270 |
+
}
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"domain": "Energy",
|
| 274 |
+
"category": "traditional",
|
| 275 |
+
"dataset": "ecl",
|
| 276 |
+
"dataset_version": "v1.0",
|
| 277 |
+
"metrics": {
|
| 278 |
+
"MAE": 15.0,
|
| 279 |
+
"Uni-MAE": 25.0,
|
| 280 |
+
"RMSE": 15.0,
|
| 281 |
+
"MAPE": 15.0,
|
| 282 |
+
"R\u00b2": 15.0,
|
| 283 |
+
"SMAPE": 15.0,
|
| 284 |
+
"Uni-Multi": 15.0
|
| 285 |
+
}
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"domain": "Energy",
|
| 289 |
+
"category": "traditional",
|
| 290 |
+
"dataset": "ercot_load",
|
| 291 |
+
"dataset_version": "v1.0",
|
| 292 |
+
"metrics": {
|
| 293 |
+
"MAE": 15.0,
|
| 294 |
+
"Uni-MAE": 25.0,
|
| 295 |
+
"RMSE": 15.0,
|
| 296 |
+
"MAPE": 15.0,
|
| 297 |
+
"R\u00b2": 15.0,
|
| 298 |
+
"SMAPE": 15.0,
|
| 299 |
+
"Uni-Multi": 15.0
|
| 300 |
+
}
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"domain": "Energy",
|
| 304 |
+
"category": "traditional",
|
| 305 |
+
"dataset": "fl_electricity",
|
| 306 |
+
"dataset_version": "v1.0",
|
| 307 |
+
"metrics": {
|
| 308 |
+
"MAE": 15.0,
|
| 309 |
+
"Uni-MAE": 25.0,
|
| 310 |
+
"RMSE": 15.0,
|
| 311 |
+
"MAPE": 15.0,
|
| 312 |
+
"R\u00b2": 15.0,
|
| 313 |
+
"SMAPE": 15.0,
|
| 314 |
+
"Uni-Multi": 15.0
|
| 315 |
+
}
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"domain": "Energy",
|
| 319 |
+
"category": "traditional",
|
| 320 |
+
"dataset": "id_electricity",
|
| 321 |
+
"dataset_version": "v1.0",
|
| 322 |
+
"metrics": {
|
| 323 |
+
"MAE": 15.0,
|
| 324 |
+
"Uni-MAE": 25.0,
|
| 325 |
+
"RMSE": 15.0,
|
| 326 |
+
"MAPE": 15.0,
|
| 327 |
+
"R\u00b2": 15.0,
|
| 328 |
+
"SMAPE": 15.0,
|
| 329 |
+
"Uni-Multi": 15.0
|
| 330 |
+
}
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"domain": "Energy",
|
| 334 |
+
"category": "traditional",
|
| 335 |
+
"dataset": "mds_microgrid",
|
| 336 |
+
"dataset_version": "v1.0",
|
| 337 |
+
"metrics": {
|
| 338 |
+
"MAE": 15.0,
|
| 339 |
+
"Uni-MAE": 25.0,
|
| 340 |
+
"RMSE": 15.0,
|
| 341 |
+
"MAPE": 15.0,
|
| 342 |
+
"R\u00b2": 15.0,
|
| 343 |
+
"SMAPE": 15.0,
|
| 344 |
+
"Uni-Multi": 15.0
|
| 345 |
+
}
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"domain": "Energy",
|
| 349 |
+
"category": "traditional",
|
| 350 |
+
"dataset": "ne_daily",
|
| 351 |
+
"dataset_version": "v1.0",
|
| 352 |
+
"metrics": {
|
| 353 |
+
"MAE": 15.0,
|
| 354 |
+
"Uni-MAE": 25.0,
|
| 355 |
+
"RMSE": 15.0,
|
| 356 |
+
"MAPE": 15.0,
|
| 357 |
+
"R\u00b2": 15.0,
|
| 358 |
+
"SMAPE": 15.0,
|
| 359 |
+
"Uni-Multi": 15.0
|
| 360 |
+
}
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"domain": "Energy",
|
| 364 |
+
"category": "traditional",
|
| 365 |
+
"dataset": "ne_electricity",
|
| 366 |
+
"dataset_version": "v1.0",
|
| 367 |
+
"metrics": {
|
| 368 |
+
"MAE": 15.0,
|
| 369 |
+
"Uni-MAE": 25.0,
|
| 370 |
+
"RMSE": 15.0,
|
| 371 |
+
"MAPE": 15.0,
|
| 372 |
+
"R\u00b2": 15.0,
|
| 373 |
+
"SMAPE": 15.0,
|
| 374 |
+
"Uni-Multi": 15.0
|
| 375 |
+
}
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"domain": "Energy",
|
| 379 |
+
"category": "traditional",
|
| 380 |
+
"dataset": "nm_daily",
|
| 381 |
+
"dataset_version": "v1.0",
|
| 382 |
+
"metrics": {
|
| 383 |
+
"MAE": 15.0,
|
| 384 |
+
"Uni-MAE": 25.0,
|
| 385 |
+
"RMSE": 15.0,
|
| 386 |
+
"MAPE": 15.0,
|
| 387 |
+
"R\u00b2": 15.0,
|
| 388 |
+
"SMAPE": 15.0,
|
| 389 |
+
"Uni-Multi": 15.0
|
| 390 |
+
}
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"domain": "Energy",
|
| 394 |
+
"category": "traditional",
|
| 395 |
+
"dataset": "northern_electricity",
|
| 396 |
+
"dataset_version": "v1.0",
|
| 397 |
+
"metrics": {
|
| 398 |
+
"MAE": 15.0,
|
| 399 |
+
"Uni-MAE": 25.0,
|
| 400 |
+
"RMSE": 15.0,
|
| 401 |
+
"MAPE": 15.0,
|
| 402 |
+
"R\u00b2": 15.0,
|
| 403 |
+
"SMAPE": 15.0,
|
| 404 |
+
"Uni-Multi": 15.0
|
| 405 |
+
}
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"domain": "Energy",
|
| 409 |
+
"category": "traditional",
|
| 410 |
+
"dataset": "ny_daily",
|
| 411 |
+
"dataset_version": "v1.0",
|
| 412 |
+
"metrics": {
|
| 413 |
+
"MAE": 15.0,
|
| 414 |
+
"Uni-MAE": 25.0,
|
| 415 |
+
"RMSE": 15.0,
|
| 416 |
+
"MAPE": 15.0,
|
| 417 |
+
"R\u00b2": 15.0,
|
| 418 |
+
"SMAPE": 15.0,
|
| 419 |
+
"Uni-Multi": 15.0
|
| 420 |
+
}
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"domain": "Energy",
|
| 424 |
+
"category": "traditional",
|
| 425 |
+
"dataset": "ny_electricity2525",
|
| 426 |
+
"dataset_version": "v1.0",
|
| 427 |
+
"metrics": {
|
| 428 |
+
"MAE": 15.0,
|
| 429 |
+
"Uni-MAE": 25.0,
|
| 430 |
+
"RMSE": 15.0,
|
| 431 |
+
"MAPE": 15.0,
|
| 432 |
+
"R\u00b2": 15.0,
|
| 433 |
+
"SMAPE": 15.0,
|
| 434 |
+
"Uni-Multi": 15.0
|
| 435 |
+
}
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"domain": "Energy",
|
| 439 |
+
"category": "traditional",
|
| 440 |
+
"dataset": "or_electricity",
|
| 441 |
+
"dataset_version": "v1.0",
|
| 442 |
+
"metrics": {
|
| 443 |
+
"MAE": 15.0,
|
| 444 |
+
"Uni-MAE": 25.0,
|
| 445 |
+
"RMSE": 15.0,
|
| 446 |
+
"MAPE": 15.0,
|
| 447 |
+
"R\u00b2": 15.0,
|
| 448 |
+
"SMAPE": 15.0,
|
| 449 |
+
"Uni-Multi": 15.0
|
| 450 |
+
}
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"domain": "Energy",
|
| 454 |
+
"category": "traditional",
|
| 455 |
+
"dataset": "pa_daily",
|
| 456 |
+
"dataset_version": "v1.0",
|
| 457 |
+
"metrics": {
|
| 458 |
+
"MAE": 15.0,
|
| 459 |
+
"Uni-MAE": 25.0,
|
| 460 |
+
"RMSE": 15.0,
|
| 461 |
+
"MAPE": 15.0,
|
| 462 |
+
"R\u00b2": 15.0,
|
| 463 |
+
"SMAPE": 15.0,
|
| 464 |
+
"Uni-Multi": 15.0
|
| 465 |
+
}
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"domain": "Energy",
|
| 469 |
+
"category": "traditional",
|
| 470 |
+
"dataset": "pa_electricity",
|
| 471 |
+
"dataset_version": "v1.0",
|
| 472 |
+
"metrics": {
|
| 473 |
+
"MAE": 15.0,
|
| 474 |
+
"Uni-MAE": 25.0,
|
| 475 |
+
"RMSE": 15.0,
|
| 476 |
+
"MAPE": 15.0,
|
| 477 |
+
"R\u00b2": 15.0,
|
| 478 |
+
"SMAPE": 15.0,
|
| 479 |
+
"Uni-Multi": 15.0
|
| 480 |
+
}
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"domain": "Energy",
|
| 484 |
+
"category": "traditional",
|
| 485 |
+
"dataset": "se_electricity",
|
| 486 |
+
"dataset_version": "v1.0",
|
| 487 |
+
"metrics": {
|
| 488 |
+
"MAE": 15.0,
|
| 489 |
+
"Uni-MAE": 25.0,
|
| 490 |
+
"RMSE": 15.0,
|
| 491 |
+
"MAPE": 15.0,
|
| 492 |
+
"R\u00b2": 15.0,
|
| 493 |
+
"SMAPE": 15.0,
|
| 494 |
+
"Uni-Multi": 15.0
|
| 495 |
+
}
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"domain": "Energy",
|
| 499 |
+
"category": "traditional",
|
| 500 |
+
"dataset": "solar_alabama",
|
| 501 |
+
"dataset_version": "v1.0",
|
| 502 |
+
"metrics": {
|
| 503 |
+
"MAE": 15.0,
|
| 504 |
+
"Uni-MAE": 25.0,
|
| 505 |
+
"RMSE": 15.0,
|
| 506 |
+
"MAPE": 15.0,
|
| 507 |
+
"R\u00b2": 15.0,
|
| 508 |
+
"SMAPE": 15.0,
|
| 509 |
+
"Uni-Multi": 15.0
|
| 510 |
+
}
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"domain": "Energy",
|
| 514 |
+
"category": "traditional",
|
| 515 |
+
"dataset": "southern_electricity",
|
| 516 |
+
"dataset_version": "v1.0",
|
| 517 |
+
"metrics": {
|
| 518 |
+
"MAE": 15.0,
|
| 519 |
+
"Uni-MAE": 25.0,
|
| 520 |
+
"RMSE": 15.0,
|
| 521 |
+
"MAPE": 15.0,
|
| 522 |
+
"R\u00b2": 15.0,
|
| 523 |
+
"SMAPE": 15.0,
|
| 524 |
+
"Uni-Multi": 15.0
|
| 525 |
+
}
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"domain": "Energy",
|
| 529 |
+
"category": "traditional",
|
| 530 |
+
"dataset": "tn_daily",
|
| 531 |
+
"dataset_version": "v1.0",
|
| 532 |
+
"metrics": {
|
| 533 |
+
"MAE": 15.0,
|
| 534 |
+
"Uni-MAE": 25.0,
|
| 535 |
+
"RMSE": 15.0,
|
| 536 |
+
"MAPE": 15.0,
|
| 537 |
+
"R\u00b2": 15.0,
|
| 538 |
+
"SMAPE": 15.0,
|
| 539 |
+
"Uni-Multi": 15.0
|
| 540 |
+
}
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"domain": "Energy",
|
| 544 |
+
"category": "traditional",
|
| 545 |
+
"dataset": "tn_electricity",
|
| 546 |
+
"dataset_version": "v1.0",
|
| 547 |
+
"metrics": {
|
| 548 |
+
"MAE": 15.0,
|
| 549 |
+
"Uni-MAE": 25.0,
|
| 550 |
+
"RMSE": 15.0,
|
| 551 |
+
"MAPE": 15.0,
|
| 552 |
+
"R\u00b2": 15.0,
|
| 553 |
+
"SMAPE": 15.0,
|
| 554 |
+
"Uni-Multi": 15.0
|
| 555 |
+
}
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"domain": "Energy",
|
| 559 |
+
"category": "traditional",
|
| 560 |
+
"dataset": "tx_daily",
|
| 561 |
+
"dataset_version": "v1.0",
|
| 562 |
+
"metrics": {
|
| 563 |
+
"MAE": 15.0,
|
| 564 |
+
"Uni-MAE": 25.0,
|
| 565 |
+
"RMSE": 15.0,
|
| 566 |
+
"MAPE": 15.0,
|
| 567 |
+
"R\u00b2": 15.0,
|
| 568 |
+
"SMAPE": 15.0,
|
| 569 |
+
"Uni-Multi": 15.0
|
| 570 |
+
}
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"domain": "Energy",
|
| 574 |
+
"category": "traditional",
|
| 575 |
+
"dataset": "tx_electricity",
|
| 576 |
+
"dataset_version": "v1.0",
|
| 577 |
+
"metrics": {
|
| 578 |
+
"MAE": 15.0,
|
| 579 |
+
"Uni-MAE": 25.0,
|
| 580 |
+
"RMSE": 15.0,
|
| 581 |
+
"MAPE": 15.0,
|
| 582 |
+
"R\u00b2": 15.0,
|
| 583 |
+
"SMAPE": 15.0,
|
| 584 |
+
"Uni-Multi": 15.0
|
| 585 |
+
}
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"domain": "Energy",
|
| 589 |
+
"category": "traditional",
|
| 590 |
+
"dataset": "western_electricity",
|
| 591 |
+
"dataset_version": "v1.0",
|
| 592 |
+
"metrics": {
|
| 593 |
+
"MAE": 15.0,
|
| 594 |
+
"Uni-MAE": 25.0,
|
| 595 |
+
"RMSE": 15.0,
|
| 596 |
+
"MAPE": 15.0,
|
| 597 |
+
"R\u00b2": 15.0,
|
| 598 |
+
"SMAPE": 15.0,
|
| 599 |
+
"Uni-Multi": 15.0
|
| 600 |
+
}
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"domain": "Engineering",
|
| 604 |
+
"category": "traditional",
|
| 605 |
+
"dataset": "ev-sensors",
|
| 606 |
+
"dataset_version": "v1.0",
|
| 607 |
+
"metrics": {
|
| 608 |
+
"MAE": 15.0,
|
| 609 |
+
"Uni-MAE": 25.0,
|
| 610 |
+
"RMSE": 15.0,
|
| 611 |
+
"MAPE": 15.0,
|
| 612 |
+
"R\u00b2": 15.0,
|
| 613 |
+
"SMAPE": 15.0,
|
| 614 |
+
"Uni-Multi": 15.0
|
| 615 |
+
}
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"domain": "Engineering",
|
| 619 |
+
"category": "traditional",
|
| 620 |
+
"dataset": "voip",
|
| 621 |
+
"dataset_version": "v1.0",
|
| 622 |
+
"metrics": {
|
| 623 |
+
"MAE": 15.0,
|
| 624 |
+
"Uni-MAE": 25.0,
|
| 625 |
+
"RMSE": 15.0,
|
| 626 |
+
"MAPE": 15.0,
|
| 627 |
+
"R\u00b2": 15.0,
|
| 628 |
+
"SMAPE": 15.0,
|
| 629 |
+
"Uni-Multi": 15.0
|
| 630 |
+
}
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"domain": "Environment",
|
| 634 |
+
"category": "traditional",
|
| 635 |
+
"dataset": "beijing_aq",
|
| 636 |
+
"dataset_version": "v1.0",
|
| 637 |
+
"metrics": {
|
| 638 |
+
"MAE": 15.0,
|
| 639 |
+
"Uni-MAE": 25.0,
|
| 640 |
+
"RMSE": 15.0,
|
| 641 |
+
"MAPE": 15.0,
|
| 642 |
+
"R\u00b2": 15.0,
|
| 643 |
+
"SMAPE": 15.0,
|
| 644 |
+
"Uni-Multi": 15.0
|
| 645 |
+
}
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"domain": "Environment",
|
| 649 |
+
"category": "traditional",
|
| 650 |
+
"dataset": "beijing_embassy",
|
| 651 |
+
"dataset_version": "v1.0",
|
| 652 |
+
"metrics": {
|
| 653 |
+
"MAE": 15.0,
|
| 654 |
+
"Uni-MAE": 25.0,
|
| 655 |
+
"RMSE": 15.0,
|
| 656 |
+
"MAPE": 15.0,
|
| 657 |
+
"R\u00b2": 15.0,
|
| 658 |
+
"SMAPE": 15.0,
|
| 659 |
+
"Uni-Multi": 15.0
|
| 660 |
+
}
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"domain": "Environment",
|
| 664 |
+
"category": "traditional",
|
| 665 |
+
"dataset": "causalrivers",
|
| 666 |
+
"dataset_version": "v1.0",
|
| 667 |
+
"metrics": {
|
| 668 |
+
"MAE": 15.0,
|
| 669 |
+
"Uni-MAE": 25.0,
|
| 670 |
+
"RMSE": 15.0,
|
| 671 |
+
"MAPE": 15.0,
|
| 672 |
+
"R\u00b2": 15.0,
|
| 673 |
+
"SMAPE": 15.0,
|
| 674 |
+
"Uni-Multi": 15.0
|
| 675 |
+
}
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"domain": "Environment",
|
| 679 |
+
"category": "traditional",
|
| 680 |
+
"dataset": "gas_sensor",
|
| 681 |
+
"dataset_version": "v1.0",
|
| 682 |
+
"metrics": {
|
| 683 |
+
"MAE": 15.0,
|
| 684 |
+
"Uni-MAE": 25.0,
|
| 685 |
+
"RMSE": 15.0,
|
| 686 |
+
"MAPE": 15.0,
|
| 687 |
+
"R\u00b2": 15.0,
|
| 688 |
+
"SMAPE": 15.0,
|
| 689 |
+
"Uni-Multi": 15.0
|
| 690 |
+
}
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"domain": "Environment",
|
| 694 |
+
"category": "traditional",
|
| 695 |
+
"dataset": "oikolab_weather",
|
| 696 |
+
"dataset_version": "v1.0",
|
| 697 |
+
"metrics": {
|
| 698 |
+
"MAE": 15.0,
|
| 699 |
+
"Uni-MAE": 25.0,
|
| 700 |
+
"RMSE": 15.0,
|
| 701 |
+
"MAPE": 15.0,
|
| 702 |
+
"R\u00b2": 15.0,
|
| 703 |
+
"SMAPE": 15.0,
|
| 704 |
+
"Uni-Multi": 15.0
|
| 705 |
+
}
|
| 706 |
+
},
|
| 707 |
+
{
|
| 708 |
+
"domain": "Environment",
|
| 709 |
+
"category": "traditional",
|
| 710 |
+
"dataset": "open_aq",
|
| 711 |
+
"dataset_version": "v1.0",
|
| 712 |
+
"metrics": {
|
| 713 |
+
"MAE": 15.0,
|
| 714 |
+
"Uni-MAE": 25.0,
|
| 715 |
+
"RMSE": 15.0,
|
| 716 |
+
"MAPE": 15.0,
|
| 717 |
+
"R\u00b2": 15.0,
|
| 718 |
+
"SMAPE": 15.0,
|
| 719 |
+
"Uni-Multi": 15.0
|
| 720 |
+
}
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"domain": "Environment",
|
| 724 |
+
"category": "traditional",
|
| 725 |
+
"dataset": "weather_mpi",
|
| 726 |
+
"dataset_version": "v1.0",
|
| 727 |
+
"metrics": {
|
| 728 |
+
"MAE": 15.0,
|
| 729 |
+
"Uni-MAE": 25.0,
|
| 730 |
+
"RMSE": 15.0,
|
| 731 |
+
"MAPE": 15.0,
|
| 732 |
+
"R\u00b2": 15.0,
|
| 733 |
+
"SMAPE": 15.0,
|
| 734 |
+
"Uni-Multi": 15.0
|
| 735 |
+
}
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"domain": "Finance",
|
| 739 |
+
"category": "traditional",
|
| 740 |
+
"dataset": "fred_md1",
|
| 741 |
+
"dataset_version": "v1.0",
|
| 742 |
+
"metrics": {
|
| 743 |
+
"MAE": 15.0,
|
| 744 |
+
"Uni-MAE": 25.0,
|
| 745 |
+
"RMSE": 15.0,
|
| 746 |
+
"MAPE": 15.0,
|
| 747 |
+
"R\u00b2": 15.0,
|
| 748 |
+
"SMAPE": 15.0,
|
| 749 |
+
"Uni-Multi": 15.0
|
| 750 |
+
}
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"domain": "Finance",
|
| 754 |
+
"category": "traditional",
|
| 755 |
+
"dataset": "fred_md2",
|
| 756 |
+
"dataset_version": "v1.0",
|
| 757 |
+
"metrics": {
|
| 758 |
+
"MAE": 15.0,
|
| 759 |
+
"Uni-MAE": 25.0,
|
| 760 |
+
"RMSE": 15.0,
|
| 761 |
+
"MAPE": 15.0,
|
| 762 |
+
"R\u00b2": 15.0,
|
| 763 |
+
"SMAPE": 15.0,
|
| 764 |
+
"Uni-Multi": 15.0
|
| 765 |
+
}
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"domain": "Finance",
|
| 769 |
+
"category": "traditional",
|
| 770 |
+
"dataset": "fred_md3",
|
| 771 |
+
"dataset_version": "v1.0",
|
| 772 |
+
"metrics": {
|
| 773 |
+
"MAE": 15.0,
|
| 774 |
+
"Uni-MAE": 25.0,
|
| 775 |
+
"RMSE": 15.0,
|
| 776 |
+
"MAPE": 15.0,
|
| 777 |
+
"R\u00b2": 15.0,
|
| 778 |
+
"SMAPE": 15.0,
|
| 779 |
+
"Uni-Multi": 15.0
|
| 780 |
+
}
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"domain": "Finance",
|
| 784 |
+
"category": "traditional",
|
| 785 |
+
"dataset": "fred_md4",
|
| 786 |
+
"dataset_version": "v1.0",
|
| 787 |
+
"metrics": {
|
| 788 |
+
"MAE": 15.0,
|
| 789 |
+
"Uni-MAE": 25.0,
|
| 790 |
+
"RMSE": 15.0,
|
| 791 |
+
"MAPE": 15.0,
|
| 792 |
+
"R\u00b2": 15.0,
|
| 793 |
+
"SMAPE": 15.0,
|
| 794 |
+
"Uni-Multi": 15.0
|
| 795 |
+
}
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"domain": "Finance",
|
| 799 |
+
"category": "traditional",
|
| 800 |
+
"dataset": "fred_md5",
|
| 801 |
+
"dataset_version": "v1.0",
|
| 802 |
+
"metrics": {
|
| 803 |
+
"MAE": 15.0,
|
| 804 |
+
"Uni-MAE": 25.0,
|
| 805 |
+
"RMSE": 15.0,
|
| 806 |
+
"MAPE": 15.0,
|
| 807 |
+
"R\u00b2": 15.0,
|
| 808 |
+
"SMAPE": 15.0,
|
| 809 |
+
"Uni-Multi": 15.0
|
| 810 |
+
}
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"domain": "Finance",
|
| 814 |
+
"category": "traditional",
|
| 815 |
+
"dataset": "fred_md6",
|
| 816 |
+
"dataset_version": "v1.0",
|
| 817 |
+
"metrics": {
|
| 818 |
+
"MAE": 15.0,
|
| 819 |
+
"Uni-MAE": 25.0,
|
| 820 |
+
"RMSE": 15.0,
|
| 821 |
+
"MAPE": 15.0,
|
| 822 |
+
"R\u00b2": 15.0,
|
| 823 |
+
"SMAPE": 15.0,
|
| 824 |
+
"Uni-Multi": 15.0
|
| 825 |
+
}
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"domain": "Finance",
|
| 829 |
+
"category": "traditional",
|
| 830 |
+
"dataset": "fred_md7",
|
| 831 |
+
"dataset_version": "v1.0",
|
| 832 |
+
"metrics": {
|
| 833 |
+
"MAE": 15.0,
|
| 834 |
+
"Uni-MAE": 25.0,
|
| 835 |
+
"RMSE": 15.0,
|
| 836 |
+
"MAPE": 15.0,
|
| 837 |
+
"R\u00b2": 15.0,
|
| 838 |
+
"SMAPE": 15.0,
|
| 839 |
+
"Uni-Multi": 15.0
|
| 840 |
+
}
|
| 841 |
+
},
|
| 842 |
+
{
|
| 843 |
+
"domain": "Finance",
|
| 844 |
+
"category": "traditional",
|
| 845 |
+
"dataset": "fred_md8",
|
| 846 |
+
"dataset_version": "v1.0",
|
| 847 |
+
"metrics": {
|
| 848 |
+
"MAE": 15.0,
|
| 849 |
+
"Uni-MAE": 25.0,
|
| 850 |
+
"RMSE": 15.0,
|
| 851 |
+
"MAPE": 15.0,
|
| 852 |
+
"R\u00b2": 15.0,
|
| 853 |
+
"SMAPE": 15.0,
|
| 854 |
+
"Uni-Multi": 15.0
|
| 855 |
+
}
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"domain": "Health",
|
| 859 |
+
"category": "traditional",
|
| 860 |
+
"dataset": "cgm",
|
| 861 |
+
"dataset_version": "v1.0",
|
| 862 |
+
"metrics": {
|
| 863 |
+
"MAE": 15.0,
|
| 864 |
+
"Uni-MAE": 25.0,
|
| 865 |
+
"RMSE": 15.0,
|
| 866 |
+
"MAPE": 15.0,
|
| 867 |
+
"R\u00b2": 15.0,
|
| 868 |
+
"SMAPE": 15.0,
|
| 869 |
+
"Uni-Multi": 15.0
|
| 870 |
+
}
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"domain": "Health",
|
| 874 |
+
"category": "traditional",
|
| 875 |
+
"dataset": "sleep_lab",
|
| 876 |
+
"dataset_version": "v1.0",
|
| 877 |
+
"metrics": {
|
| 878 |
+
"MAE": 15.0,
|
| 879 |
+
"Uni-MAE": 25.0,
|
| 880 |
+
"RMSE": 15.0,
|
| 881 |
+
"MAPE": 15.0,
|
| 882 |
+
"R\u00b2": 15.0,
|
| 883 |
+
"SMAPE": 15.0,
|
| 884 |
+
"Uni-Multi": 15.0
|
| 885 |
+
}
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"domain": "Image",
|
| 889 |
+
"category": "sequential",
|
| 890 |
+
"dataset": "cifar150_timeseries_csvs",
|
| 891 |
+
"dataset_version": "v1.0",
|
| 892 |
+
"metrics": {
|
| 893 |
+
"MAE": 15.0,
|
| 894 |
+
"Uni-MAE": 25.0,
|
| 895 |
+
"RMSE": 15.0,
|
| 896 |
+
"MAPE": 15.0,
|
| 897 |
+
"R\u00b2": 15.0,
|
| 898 |
+
"SMAPE": 15.0,
|
| 899 |
+
"Uni-Multi": 15.0
|
| 900 |
+
}
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"domain": "Public Info",
|
| 904 |
+
"category": "traditional",
|
| 905 |
+
"dataset": "austin_water",
|
| 906 |
+
"dataset_version": "v1.0",
|
| 907 |
+
"metrics": {
|
| 908 |
+
"MAE": 15.0,
|
| 909 |
+
"Uni-MAE": 25.0,
|
| 910 |
+
"RMSE": 15.0,
|
| 911 |
+
"MAPE": 15.0,
|
| 912 |
+
"R\u00b2": 15.0,
|
| 913 |
+
"SMAPE": 15.0,
|
| 914 |
+
"Uni-Multi": 15.0
|
| 915 |
+
}
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"domain": "Public Info",
|
| 919 |
+
"category": "traditional",
|
| 920 |
+
"dataset": "blue_bikes",
|
| 921 |
+
"dataset_version": "v1.0",
|
| 922 |
+
"metrics": {
|
| 923 |
+
"MAE": 15.0,
|
| 924 |
+
"Uni-MAE": 25.0,
|
| 925 |
+
"RMSE": 15.0,
|
| 926 |
+
"MAPE": 15.0,
|
| 927 |
+
"R\u00b2": 15.0,
|
| 928 |
+
"SMAPE": 15.0,
|
| 929 |
+
"Uni-Multi": 15.0
|
| 930 |
+
}
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"domain": "Public Info",
|
| 934 |
+
"category": "traditional",
|
| 935 |
+
"dataset": "cursor-tabs",
|
| 936 |
+
"dataset_version": "v1.0",
|
| 937 |
+
"metrics": {
|
| 938 |
+
"MAE": 15.0,
|
| 939 |
+
"Uni-MAE": 25.0,
|
| 940 |
+
"RMSE": 15.0,
|
| 941 |
+
"MAPE": 15.0,
|
| 942 |
+
"R\u00b2": 15.0,
|
| 943 |
+
"SMAPE": 15.0,
|
| 944 |
+
"Uni-Multi": 15.0
|
| 945 |
+
}
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"domain": "Public Info",
|
| 949 |
+
"category": "traditional",
|
| 950 |
+
"dataset": "mn_interstate",
|
| 951 |
+
"dataset_version": "v1.0",
|
| 952 |
+
"metrics": {
|
| 953 |
+
"MAE": 15.0,
|
| 954 |
+
"Uni-MAE": 25.0,
|
| 955 |
+
"RMSE": 15.0,
|
| 956 |
+
"MAPE": 15.0,
|
| 957 |
+
"R\u00b2": 15.0,
|
| 958 |
+
"SMAPE": 15.0,
|
| 959 |
+
"Uni-Multi": 15.0
|
| 960 |
+
}
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"domain": "Public Info",
|
| 964 |
+
"category": "traditional",
|
| 965 |
+
"dataset": "mta_ridership",
|
| 966 |
+
"dataset_version": "v1.0",
|
| 967 |
+
"metrics": {
|
| 968 |
+
"MAE": 15.0,
|
| 969 |
+
"Uni-MAE": 25.0,
|
| 970 |
+
"RMSE": 15.0,
|
| 971 |
+
"MAPE": 15.0,
|
| 972 |
+
"R\u00b2": 15.0,
|
| 973 |
+
"SMAPE": 15.0,
|
| 974 |
+
"Uni-Multi": 15.0
|
| 975 |
+
}
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"domain": "Public Info",
|
| 979 |
+
"category": "traditional",
|
| 980 |
+
"dataset": "paris_mobility",
|
| 981 |
+
"dataset_version": "v1.0",
|
| 982 |
+
"metrics": {
|
| 983 |
+
"MAE": 15.0,
|
| 984 |
+
"Uni-MAE": 25.0,
|
| 985 |
+
"RMSE": 15.0,
|
| 986 |
+
"MAPE": 15.0,
|
| 987 |
+
"R\u00b2": 15.0,
|
| 988 |
+
"SMAPE": 15.0,
|
| 989 |
+
"Uni-Multi": 15.0
|
| 990 |
+
}
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"domain": "Public Info",
|
| 994 |
+
"category": "traditional",
|
| 995 |
+
"dataset": "lyft",
|
| 996 |
+
"dataset_version": "v1.0",
|
| 997 |
+
"metrics": {
|
| 998 |
+
"MAE": 15.0,
|
| 999 |
+
"Uni-MAE": 25.0,
|
| 1000 |
+
"RMSE": 15.0,
|
| 1001 |
+
"MAPE": 15.0,
|
| 1002 |
+
"R\u00b2": 15.0,
|
| 1003 |
+
"SMAPE": 15.0,
|
| 1004 |
+
"Uni-Multi": 15.0
|
| 1005 |
+
}
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"domain": "Public Info",
|
| 1009 |
+
"category": "traditional",
|
| 1010 |
+
"dataset": "uber",
|
| 1011 |
+
"dataset_version": "v1.0",
|
| 1012 |
+
"metrics": {
|
| 1013 |
+
"MAE": 15.0,
|
| 1014 |
+
"Uni-MAE": 25.0,
|
| 1015 |
+
"RMSE": 15.0,
|
| 1016 |
+
"MAPE": 15.0,
|
| 1017 |
+
"R\u00b2": 15.0,
|
| 1018 |
+
"SMAPE": 15.0,
|
| 1019 |
+
"Uni-Multi": 15.0
|
| 1020 |
+
}
|
| 1021 |
+
},
|
| 1022 |
+
{
|
| 1023 |
+
"domain": "Public Info",
|
| 1024 |
+
"category": "traditional",
|
| 1025 |
+
"dataset": "tac",
|
| 1026 |
+
"dataset_version": "v1.0",
|
| 1027 |
+
"metrics": {
|
| 1028 |
+
"MAE": 15.0,
|
| 1029 |
+
"Uni-MAE": 25.0,
|
| 1030 |
+
"RMSE": 15.0,
|
| 1031 |
+
"MAPE": 15.0,
|
| 1032 |
+
"R\u00b2": 15.0,
|
| 1033 |
+
"SMAPE": 15.0,
|
| 1034 |
+
"Uni-Multi": 15.0
|
| 1035 |
+
}
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"domain": "Public Info",
|
| 1039 |
+
"category": "traditional",
|
| 1040 |
+
"dataset": "traffic_PeMS",
|
| 1041 |
+
"dataset_version": "v1.0",
|
| 1042 |
+
"metrics": {
|
| 1043 |
+
"MAE": 15.0,
|
| 1044 |
+
"Uni-MAE": 25.0,
|
| 1045 |
+
"RMSE": 15.0,
|
| 1046 |
+
"MAPE": 15.0,
|
| 1047 |
+
"R\u00b2": 15.0,
|
| 1048 |
+
"SMAPE": 15.0,
|
| 1049 |
+
"Uni-Multi": 15.0
|
| 1050 |
+
}
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"domain": "Sales",
|
| 1054 |
+
"category": "traditional",
|
| 1055 |
+
"dataset": "bitcoin_price",
|
| 1056 |
+
"dataset_version": "v1.0",
|
| 1057 |
+
"metrics": {
|
| 1058 |
+
"MAE": 15.0,
|
| 1059 |
+
"Uni-MAE": 25.0,
|
| 1060 |
+
"RMSE": 15.0,
|
| 1061 |
+
"MAPE": 15.0,
|
| 1062 |
+
"R\u00b2": 15.0,
|
| 1063 |
+
"SMAPE": 15.0,
|
| 1064 |
+
"Uni-Multi": 15.0
|
| 1065 |
+
}
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"domain": "Sales",
|
| 1069 |
+
"category": "traditional",
|
| 1070 |
+
"dataset": "blow_molding",
|
| 1071 |
+
"dataset_version": "v1.0",
|
| 1072 |
+
"metrics": {
|
| 1073 |
+
"MAE": 15.0,
|
| 1074 |
+
"Uni-MAE": 25.0,
|
| 1075 |
+
"RMSE": 15.0,
|
| 1076 |
+
"MAPE": 15.0,
|
| 1077 |
+
"R\u00b2": 15.0,
|
| 1078 |
+
"SMAPE": 15.0,
|
| 1079 |
+
"Uni-Multi": 15.0
|
| 1080 |
+
}
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"domain": "Sales",
|
| 1084 |
+
"category": "traditional",
|
| 1085 |
+
"dataset": "gold_prices",
|
| 1086 |
+
"dataset_version": "v1.0",
|
| 1087 |
+
"metrics": {
|
| 1088 |
+
"MAE": 15.0,
|
| 1089 |
+
"Uni-MAE": 25.0,
|
| 1090 |
+
"RMSE": 15.0,
|
| 1091 |
+
"MAPE": 15.0,
|
| 1092 |
+
"R\u00b2": 15.0,
|
| 1093 |
+
"SMAPE": 15.0,
|
| 1094 |
+
"Uni-Multi": 15.0
|
| 1095 |
+
}
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"domain": "Sales",
|
| 1099 |
+
"category": "traditional",
|
| 1100 |
+
"dataset": "pasta_sales",
|
| 1101 |
+
"dataset_version": "v1.0",
|
| 1102 |
+
"metrics": {
|
| 1103 |
+
"MAE": 15.0,
|
| 1104 |
+
"Uni-MAE": 25.0,
|
| 1105 |
+
"RMSE": 15.0,
|
| 1106 |
+
"MAPE": 15.0,
|
| 1107 |
+
"R\u00b2": 15.0,
|
| 1108 |
+
"SMAPE": 15.0,
|
| 1109 |
+
"Uni-Multi": 15.0
|
| 1110 |
+
}
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"domain": "Sales",
|
| 1114 |
+
"category": "traditional",
|
| 1115 |
+
"dataset": "rice_prices",
|
| 1116 |
+
"dataset_version": "v1.0",
|
| 1117 |
+
"metrics": {
|
| 1118 |
+
"MAE": 15.0,
|
| 1119 |
+
"Uni-MAE": 25.0,
|
| 1120 |
+
"RMSE": 15.0,
|
| 1121 |
+
"MAPE": 15.0,
|
| 1122 |
+
"R\u00b2": 15.0,
|
| 1123 |
+
"SMAPE": 15.0,
|
| 1124 |
+
"Uni-Multi": 15.0
|
| 1125 |
+
}
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"domain": "Sales",
|
| 1129 |
+
"category": "traditional",
|
| 1130 |
+
"dataset": "walmart-sales",
|
| 1131 |
+
"dataset_version": "v1.0",
|
| 1132 |
+
"metrics": {
|
| 1133 |
+
"MAE": 15.0,
|
| 1134 |
+
"Uni-MAE": 25.0,
|
| 1135 |
+
"RMSE": 15.0,
|
| 1136 |
+
"MAPE": 15.0,
|
| 1137 |
+
"R\u00b2": 15.0,
|
| 1138 |
+
"SMAPE": 15.0,
|
| 1139 |
+
"Uni-Multi": 15.0
|
| 1140 |
+
}
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"domain": "Scientific",
|
| 1144 |
+
"category": "sequential",
|
| 1145 |
+
"dataset": "ant_csv_out",
|
| 1146 |
+
"dataset_version": "v1.0",
|
| 1147 |
+
"metrics": {
|
| 1148 |
+
"MAE": 15.0,
|
| 1149 |
+
"Uni-MAE": 25.0,
|
| 1150 |
+
"RMSE": 15.0,
|
| 1151 |
+
"MAPE": 15.0,
|
| 1152 |
+
"R\u00b2": 15.0,
|
| 1153 |
+
"SMAPE": 15.0,
|
| 1154 |
+
"Uni-Multi": 15.0
|
| 1155 |
+
}
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"domain": "Scientific",
|
| 1159 |
+
"category": "sequential",
|
| 1160 |
+
"dataset": "hopper_csv_out",
|
| 1161 |
+
"dataset_version": "v1.0",
|
| 1162 |
+
"metrics": {
|
| 1163 |
+
"MAE": 15.0,
|
| 1164 |
+
"Uni-MAE": 25.0,
|
| 1165 |
+
"RMSE": 15.0,
|
| 1166 |
+
"MAPE": 15.0,
|
| 1167 |
+
"R\u00b2": 15.0,
|
| 1168 |
+
"SMAPE": 15.0,
|
| 1169 |
+
"Uni-Multi": 15.0
|
| 1170 |
+
}
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"domain": "Scientific",
|
| 1174 |
+
"category": "sequential",
|
| 1175 |
+
"dataset": "cheetah_csv_out",
|
| 1176 |
+
"dataset_version": "v1.0",
|
| 1177 |
+
"metrics": {
|
| 1178 |
+
"MAE": 15.0,
|
| 1179 |
+
"Uni-MAE": 25.0,
|
| 1180 |
+
"RMSE": 15.0,
|
| 1181 |
+
"MAPE": 15.0,
|
| 1182 |
+
"R\u00b2": 15.0,
|
| 1183 |
+
"SMAPE": 15.0,
|
| 1184 |
+
"Uni-Multi": 15.0
|
| 1185 |
+
}
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"domain": "Scientific",
|
| 1189 |
+
"category": "sequential",
|
| 1190 |
+
"dataset": "walker2d_csv_out",
|
| 1191 |
+
"dataset_version": "v1.0",
|
| 1192 |
+
"metrics": {
|
| 1193 |
+
"MAE": 15.0,
|
| 1194 |
+
"Uni-MAE": 25.0,
|
| 1195 |
+
"RMSE": 15.0,
|
| 1196 |
+
"MAPE": 15.0,
|
| 1197 |
+
"R\u00b2": 15.0,
|
| 1198 |
+
"SMAPE": 15.0,
|
| 1199 |
+
"Uni-Multi": 15.0
|
| 1200 |
+
}
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"domain": "Scientific",
|
| 1204 |
+
"category": "sequential",
|
| 1205 |
+
"dataset": "spriteworld",
|
| 1206 |
+
"dataset_version": "v1.0",
|
| 1207 |
+
"metrics": {
|
| 1208 |
+
"MAE": 15.0,
|
| 1209 |
+
"Uni-MAE": 25.0,
|
| 1210 |
+
"RMSE": 15.0,
|
| 1211 |
+
"MAPE": 15.0,
|
| 1212 |
+
"R\u00b2": 15.0,
|
| 1213 |
+
"SMAPE": 15.0,
|
| 1214 |
+
"Uni-Multi": 15.0
|
| 1215 |
+
}
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"domain": "Stock",
|
| 1219 |
+
"category": "collections",
|
| 1220 |
+
"dataset": "stock_nasdaqtrader",
|
| 1221 |
+
"dataset_version": "v1.0",
|
| 1222 |
+
"metrics": {
|
| 1223 |
+
"MAE": 15.0,
|
| 1224 |
+
"Uni-MAE": 25.0,
|
| 1225 |
+
"RMSE": 15.0,
|
| 1226 |
+
"MAPE": 15.0,
|
| 1227 |
+
"R\u00b2": 15.0,
|
| 1228 |
+
"SMAPE": 15.0,
|
| 1229 |
+
"Uni-Multi": 15.0
|
| 1230 |
+
}
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"domain": "Text",
|
| 1234 |
+
"category": "sequential",
|
| 1235 |
+
"dataset": "openwebtext_timeseries_csvs",
|
| 1236 |
+
"dataset_version": "v1.0",
|
| 1237 |
+
"metrics": {
|
| 1238 |
+
"MAE": 15.0,
|
| 1239 |
+
"Uni-MAE": 25.0,
|
| 1240 |
+
"RMSE": 15.0,
|
| 1241 |
+
"MAPE": 15.0,
|
| 1242 |
+
"R\u00b2": 15.0,
|
| 1243 |
+
"SMAPE": 15.0,
|
| 1244 |
+
"Uni-Multi": 15.0
|
| 1245 |
+
}
|
| 1246 |
+
},
|
| 1247 |
+
{
|
| 1248 |
+
"domain": "Video",
|
| 1249 |
+
"category": "sequential",
|
| 1250 |
+
"dataset": "KITTI",
|
| 1251 |
+
"dataset_version": "v1.0",
|
| 1252 |
+
"metrics": {
|
| 1253 |
+
"MAE": 15.0,
|
| 1254 |
+
"Uni-MAE": 25.0,
|
| 1255 |
+
"RMSE": 15.0,
|
| 1256 |
+
"MAPE": 15.0,
|
| 1257 |
+
"R\u00b2": 15.0,
|
| 1258 |
+
"SMAPE": 15.0,
|
| 1259 |
+
"Uni-Multi": 15.0
|
| 1260 |
+
}
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"domain": "Web",
|
| 1264 |
+
"category": "traditional",
|
| 1265 |
+
"dataset": "website_visitors",
|
| 1266 |
+
"dataset_version": "v1.0",
|
| 1267 |
+
"metrics": {
|
| 1268 |
+
"MAE": 15.0,
|
| 1269 |
+
"Uni-MAE": 25.0,
|
| 1270 |
+
"RMSE": 15.0,
|
| 1271 |
+
"MAPE": 15.0,
|
| 1272 |
+
"R\u00b2": 15.0,
|
| 1273 |
+
"SMAPE": 15.0,
|
| 1274 |
+
"Uni-Multi": 15.0
|
| 1275 |
+
}
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"domain": "Wikipedia",
|
| 1279 |
+
"category": "collections",
|
| 1280 |
+
"dataset": "wikipedia",
|
| 1281 |
+
"dataset_version": "v1.0",
|
| 1282 |
+
"metrics": {
|
| 1283 |
+
"MAE": 15.0,
|
| 1284 |
+
"Uni-MAE": 25.0,
|
| 1285 |
+
"RMSE": 15.0,
|
| 1286 |
+
"MAPE": 15.0,
|
| 1287 |
+
"R\u00b2": 15.0,
|
| 1288 |
+
"SMAPE": 15.0,
|
| 1289 |
+
"Uni-Multi": 15.0
|
| 1290 |
+
}
|
| 1291 |
+
}
|
| 1292 |
+
]
|
src/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MUSED-FM Leaderboard source package
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .load_results import (
|
| 6 |
+
load_results_with_metadata,
|
| 7 |
+
create_overall_table,
|
| 8 |
+
get_filter_options,
|
| 9 |
+
get_model_metadata,
|
| 10 |
+
create_model_metadata_display,
|
| 11 |
+
get_overall_summary
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"load_results_with_metadata",
|
| 16 |
+
"create_overall_table",
|
| 17 |
+
"get_filter_options",
|
| 18 |
+
"get_model_metadata",
|
| 19 |
+
"create_model_metadata_display",
|
| 20 |
+
"get_overall_summary"
|
| 21 |
+
]
|
src/about.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Text constants for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
TITLE = """
|
| 6 |
+
<div style="text-align: center;">
|
| 7 |
+
<h1>📊 MUSED-FM Leaderboard</h1>
|
| 8 |
+
<p style="font-size: 18px; color: #666;">Multivariate Time Series Evaluation Dataset for Foundation Models</p>
|
| 9 |
+
</div>
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
INTRODUCTION_TEXT = """
|
| 13 |
+
Welcome to the **MUSED-FM Leaderboard**! This leaderboard provides comprehensive evaluation results for foundation models on multivariate time series forecasting tasks.
|
| 14 |
+
|
| 15 |
+
**MUSED-FM** spans 16 multivariate time series domains and introduces novel synthetic data techniques, comprising 67 billion data points and 2.6 million time series.
|
| 16 |
+
|
| 17 |
+
### Key Features:
|
| 18 |
+
- **Scale**: 67 billion data points across 2.6 million time series
|
| 19 |
+
- **Domains**: 16 multivariate time series domains
|
| 20 |
+
- **Innovation**: Novel synthetic data techniques
|
| 21 |
+
- **Evaluation**: Comprehensive metrics including MAE, RMSE, MAPE, R², SMAPE, Uni-MAE, and Uni-Multi
|
| 22 |
+
|
| 23 |
+
### Dataset Structure:
|
| 24 |
+
- **Categories**: Traditional, Sequential, Synthetic, Collections
|
| 25 |
+
- **Domains**: Finance, Health, Energy, Environment, Engineering, and more
|
| 26 |
+
- **Datasets**: 86+ individual time series datasets
|
| 27 |
+
|
| 28 |
+
Use the filters below to explore results by different criteria and compare model performance across various domains and categories.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
LLM_BENCHMARKS_TEXT = """
|
| 32 |
+
# About MUSED-FM Leaderboard
|
| 33 |
+
|
| 34 |
+
## Dataset Overview
|
| 35 |
+
|
| 36 |
+
**MUSED-FM** (Multivariate Time Series Evaluation Dataset for Foundation Models) is a comprehensive benchmark for evaluating foundation models on multivariate time series forecasting tasks.
|
| 37 |
+
|
| 38 |
+
### Key Features:
|
| 39 |
+
- **Scale**: 67 billion data points across 2.6 million time series
|
| 40 |
+
- **Domains**: 16 multivariate time series domains
|
| 41 |
+
- **Innovation**: Novel synthetic data techniques
|
| 42 |
+
- **Evaluation**: Comprehensive metrics including MAE, RMSE, MAPE, R², SMAPE, Uni-MAE, and Uni-Multi
|
| 43 |
+
|
| 44 |
+
### Dataset Structure:
|
| 45 |
+
- **Categories**: Traditional, Sequential, Synthetic, Collections
|
| 46 |
+
- **Domains**: Finance, Health, Energy, Environment, Engineering, and more
|
| 47 |
+
- **Datasets**: 86+ individual time series datasets
|
| 48 |
+
|
| 49 |
+
## Evaluation Metrics
|
| 50 |
+
|
| 51 |
+
### Standard Metrics:
|
| 52 |
+
- **MAE** (Mean Absolute Error): Average absolute difference between predicted and actual values
|
| 53 |
+
- **RMSE** (Root Mean Square Error): Square root of average squared differences
|
| 54 |
+
- **MAPE** (Mean Absolute Percentage Error): Average percentage error
|
| 55 |
+
- **R²** (Coefficient of Determination): Proportion of variance explained
|
| 56 |
+
- **SMAPE** (Symmetric Mean Absolute Percentage Error): Symmetric percentage error
|
| 57 |
+
|
| 58 |
+
### Novel Metrics:
|
| 59 |
+
- **Uni-MAE**: Unified MAE metric for cross-dataset comparison
|
| 60 |
+
- **Uni-Multi**: Unified multivariate metric for comprehensive evaluation
|
| 61 |
+
|
| 62 |
+
## Resources
|
| 63 |
+
|
| 64 |
+
### Dataset Access:
|
| 65 |
+
- **Hugging Face**: [MUSED-FM Dataset](https://huggingface.co/datasets/Synthefy/MUSED-FM)
|
| 66 |
+
- **GitHub Repository**: [MUSED-FM Code](https://github.com/Synthefy/MUSED-FM)
|
| 67 |
+
|
| 68 |
+
### Citation:
|
| 69 |
+
If you use MUSED-FM in your research, please cite the original paper:
|
| 70 |
+
|
| 71 |
+
```bibtex
|
| 72 |
+
@article{mused-fm2024,
|
| 73 |
+
title={MUSED-FM: A Multivariate Time Series Evaluation Dataset for Foundation Models},
|
| 74 |
+
author={Synthefy Research Team},
|
| 75 |
+
journal={arXiv preprint},
|
| 76 |
+
year={2024}
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
## Contact & Support
|
| 81 |
+
|
| 82 |
+
For questions about the dataset or leaderboard:
|
| 83 |
+
- **Issues**: Report issues on the [GitHub repository](https://github.com/Synthefy/MUSED-FM)
|
| 84 |
+
- **Discussions**: Join discussions on [Hugging Face](https://huggingface.co/datasets/Synthefy/MUSED-FM)
|
| 85 |
+
|
| 86 |
+
## Leaderboard Information
|
| 87 |
+
|
| 88 |
+
This leaderboard provides:
|
| 89 |
+
- **Real-time Rankings**: Live updates as new submissions are received
|
| 90 |
+
- **Filtered Views**: Explore results by domain, category, and dataset
|
| 91 |
+
- **Model Inspector**: Detailed metadata for each submitted model
|
| 92 |
+
- **Comprehensive Metrics**: Multiple evaluation perspectives
|
| 93 |
+
|
| 94 |
+
The leaderboard aggregates results across all datasets to provide overall model rankings while maintaining the ability to drill down into specific domains and categories.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
CITATION_BUTTON_LABEL = "📋 Citation"
|
| 98 |
+
CITATION_BUTTON_TEXT = """@article{mused-fm2024,
|
| 99 |
+
title={MUSED-FM: A Multivariate Time Series Evaluation Dataset for Foundation Models},
|
| 100 |
+
author={Synthefy Research Team},
|
| 101 |
+
journal={arXiv preprint},
|
| 102 |
+
year={2024}
|
| 103 |
+
}"""
|
| 104 |
+
|
| 105 |
+
EVALUATION_QUEUE_TEXT = """
|
| 106 |
+
## Evaluation Queue
|
| 107 |
+
|
| 108 |
+
This section shows the current status of model evaluations in the queue.
|
| 109 |
+
"""
|
src/display/css_html_js.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CSS and styling for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
custom_css = """
|
| 6 |
+
/* Custom styling for MUSED-FM Leaderboard */
|
| 7 |
+
.elegant-table {
|
| 8 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
.markdown-text {
|
| 12 |
+
font-size: 14px;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
.tab-buttons {
|
| 17 |
+
margin-top: 20px;
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
#citation-button {
|
| 21 |
+
font-family: 'Courier New', monospace;
|
| 22 |
+
font-size: 12px;
|
| 23 |
+
}
|
| 24 |
+
"""
|
src/display/utils.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Display utilities and column definitions for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from typing import List, Dict, Any
|
| 7 |
+
from enum import Enum
|
| 8 |
+
|
| 9 |
+
# Column definitions for model information
|
| 10 |
+
@dataclass
|
| 11 |
+
class ModelInfoColumn:
|
| 12 |
+
name: str
|
| 13 |
+
type: str = "str"
|
| 14 |
+
displayed_by_default: bool = True
|
| 15 |
+
never_hidden: bool = False
|
| 16 |
+
hidden: bool = False
|
| 17 |
+
|
| 18 |
+
# Model information columns
|
| 19 |
+
model_info_columns = [
|
| 20 |
+
ModelInfoColumn("model", "str", True, True, False),
|
| 21 |
+
ModelInfoColumn("organization", "str", True, False, False),
|
| 22 |
+
ModelInfoColumn("submission_date", "str", True, False, False),
|
| 23 |
+
ModelInfoColumn("task", "str", True, False, False),
|
| 24 |
+
ModelInfoColumn("dataset_version", "str", True, False, False),
|
| 25 |
+
ModelInfoColumn("paper_url", "str", False, False, False),
|
| 26 |
+
ModelInfoColumn("code_url", "str", False, False, False),
|
| 27 |
+
ModelInfoColumn("domains", "number", True, False, False),
|
| 28 |
+
ModelInfoColumn("categories", "number", True, False, False),
|
| 29 |
+
ModelInfoColumn("datasets", "number", True, False, False),
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
# Benchmark columns (metrics)
|
| 33 |
+
BENCHMARK_COLS = [
|
| 34 |
+
"MAE", "Uni-MAE", "RMSE", "MAPE", "R²", "SMAPE", "Uni-Multi"
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
# Evaluation columns
|
| 38 |
+
EVAL_COLS = [
|
| 39 |
+
"model", "submitter", "submission_date", "domain", "category", "dataset",
|
| 40 |
+
"task", "dataset_version", "paper_url", "code_url"
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
# Evaluation types
|
| 44 |
+
EVAL_TYPES = ["multivariate_forecasting"]
|
| 45 |
+
|
| 46 |
+
# Model types
|
| 47 |
+
class ModelType(Enum):
|
| 48 |
+
FOUNDATION = "Foundation Model"
|
| 49 |
+
TRADITIONAL = "Traditional"
|
| 50 |
+
NEURAL = "Neural Network"
|
| 51 |
+
TRANSFORMER = "Transformer"
|
| 52 |
+
|
| 53 |
+
# Weight types
|
| 54 |
+
class WeightType(Enum):
|
| 55 |
+
LIGHTWEIGHT = "Lightweight"
|
| 56 |
+
MEDIUM = "Medium"
|
| 57 |
+
HEAVY = "Heavy"
|
| 58 |
+
|
| 59 |
+
# Precision types
|
| 60 |
+
class Precision(Enum):
|
| 61 |
+
FLOAT16 = "FP16"
|
| 62 |
+
FLOAT32 = "FP32"
|
| 63 |
+
MIXED = "Mixed"
|
| 64 |
+
|
| 65 |
+
# Fields function for dataclass
|
| 66 |
+
def fields(cls):
|
| 67 |
+
"""Get fields from dataclass"""
|
| 68 |
+
return cls.__dataclass_fields__.values() if hasattr(cls, '__dataclass_fields__') else []
|
src/envs.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Environment configuration for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# API configuration
|
| 8 |
+
class API:
|
| 9 |
+
@staticmethod
|
| 10 |
+
def restart_space(repo_id: str):
|
| 11 |
+
"""Restart space functionality"""
|
| 12 |
+
print(f"Restarting space: {repo_id}")
|
| 13 |
+
|
| 14 |
+
# Repository configuration
|
| 15 |
+
REPO_ID = "mused-fm-leaderboard"
|
| 16 |
+
QUEUE_REPO = "mused-fm-queue"
|
| 17 |
+
RESULTS_REPO = "mused-fm-results"
|
| 18 |
+
|
| 19 |
+
# Paths
|
| 20 |
+
EVAL_REQUESTS_PATH = "eval_requests"
|
| 21 |
+
EVAL_RESULTS_PATH = "results"
|
| 22 |
+
|
| 23 |
+
# Token (placeholder)
|
| 24 |
+
TOKEN = os.getenv("HF_TOKEN", "")
|
src/load_results.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data loading utilities for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
from typing import Dict, List, Any
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_results_with_metadata() -> List[Dict]:
|
| 13 |
+
"""Load results from results directory using metadata.json files"""
|
| 14 |
+
all_results = []
|
| 15 |
+
|
| 16 |
+
# First, try to load from results.json (user submissions)
|
| 17 |
+
results_file = "results.json"
|
| 18 |
+
if os.path.exists(results_file):
|
| 19 |
+
with open(results_file, 'r') as f:
|
| 20 |
+
data = json.load(f)
|
| 21 |
+
return data.get("results", [])
|
| 22 |
+
|
| 23 |
+
# Load from results directory with metadata support
|
| 24 |
+
results_dir = "results"
|
| 25 |
+
if os.path.exists(results_dir):
|
| 26 |
+
for item in os.listdir(results_dir):
|
| 27 |
+
item_path = os.path.join(results_dir, item)
|
| 28 |
+
if os.path.isdir(item_path):
|
| 29 |
+
# Look for metadata.json in each submission folder
|
| 30 |
+
metadata_path = os.path.join(item_path, "metadata.json")
|
| 31 |
+
results_path = None
|
| 32 |
+
|
| 33 |
+
# Find the results file (could be results.json, sample_bulk_submission.json, etc.)
|
| 34 |
+
for file in os.listdir(item_path):
|
| 35 |
+
if file.endswith('.json') and file != 'metadata.json':
|
| 36 |
+
results_path = os.path.join(item_path, file)
|
| 37 |
+
break
|
| 38 |
+
|
| 39 |
+
if os.path.exists(metadata_path) and results_path and os.path.exists(results_path):
|
| 40 |
+
try:
|
| 41 |
+
# Load metadata
|
| 42 |
+
with open(metadata_path, 'r') as f:
|
| 43 |
+
metadata = json.load(f)
|
| 44 |
+
|
| 45 |
+
# Load results
|
| 46 |
+
with open(results_path, 'r') as f:
|
| 47 |
+
results_data = json.load(f)
|
| 48 |
+
|
| 49 |
+
# Process each result entry
|
| 50 |
+
for result in results_data:
|
| 51 |
+
# Override with metadata information
|
| 52 |
+
result["model"] = metadata.get("model", result.get("model", ""))
|
| 53 |
+
result["submitter"] = metadata.get("submitter", result.get("submitter", ""))
|
| 54 |
+
result["submission_date"] = metadata.get("submission_date", result.get("submission_date", ""))
|
| 55 |
+
result["task"] = metadata.get("task", result.get("task", ""))
|
| 56 |
+
result["dataset_version"] = metadata.get("dataset_version", result.get("dataset_version", ""))
|
| 57 |
+
result["paper_url"] = metadata.get("paper_url", result.get("paper_url", ""))
|
| 58 |
+
result["code_url"] = metadata.get("code_url", result.get("code_url", ""))
|
| 59 |
+
|
| 60 |
+
all_results.append(result)
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error loading {item_path}: {e}")
|
| 64 |
+
continue
|
| 65 |
+
|
| 66 |
+
return all_results
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def create_overall_table(domain_filter="all", category_filter="all", dataset_filter="all", model_filter=""):
|
| 70 |
+
"""Create overall aggregated table with optional filters"""
|
| 71 |
+
results = load_results_with_metadata()
|
| 72 |
+
if not results:
|
| 73 |
+
return pd.DataFrame()
|
| 74 |
+
|
| 75 |
+
# Apply filters
|
| 76 |
+
filtered_results = []
|
| 77 |
+
for result in results:
|
| 78 |
+
# Domain filter
|
| 79 |
+
if domain_filter != "all" and result.get("domain", "") != domain_filter:
|
| 80 |
+
continue
|
| 81 |
+
|
| 82 |
+
# Category filter
|
| 83 |
+
if category_filter != "all" and result.get("category", "") != category_filter:
|
| 84 |
+
continue
|
| 85 |
+
|
| 86 |
+
# Dataset filter
|
| 87 |
+
if dataset_filter != "all" and result.get("dataset", "") != dataset_filter:
|
| 88 |
+
continue
|
| 89 |
+
|
| 90 |
+
# Model filter (case-insensitive partial match)
|
| 91 |
+
if model_filter and model_filter.lower() not in result.get("model", "").lower():
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
filtered_results.append(result)
|
| 95 |
+
|
| 96 |
+
if not filtered_results:
|
| 97 |
+
return pd.DataFrame()
|
| 98 |
+
|
| 99 |
+
# Group by model and calculate aggregated metrics
|
| 100 |
+
model_stats = {}
|
| 101 |
+
for result in filtered_results:
|
| 102 |
+
model = result["model"]
|
| 103 |
+
if model not in model_stats:
|
| 104 |
+
model_stats[model] = {
|
| 105 |
+
"submitter": result["submitter"],
|
| 106 |
+
"submission_date": result["submission_date"],
|
| 107 |
+
"mae_values": [],
|
| 108 |
+
"uni_mae_values": [],
|
| 109 |
+
"rmse_values": [],
|
| 110 |
+
"mape_values": [],
|
| 111 |
+
"r2_values": [],
|
| 112 |
+
"smape_values": [],
|
| 113 |
+
"uni_multi_values": [],
|
| 114 |
+
"datasets": set(),
|
| 115 |
+
"domains": set(),
|
| 116 |
+
"categories": set(),
|
| 117 |
+
"paper_url": result.get("paper_url", ""),
|
| 118 |
+
"code_url": result.get("code_url", "")
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
metrics = result["metrics"]
|
| 122 |
+
model_stats[model]["mae_values"].append(metrics["MAE"])
|
| 123 |
+
model_stats[model]["uni_mae_values"].append(metrics.get("Uni-MAE", 0))
|
| 124 |
+
model_stats[model]["rmse_values"].append(metrics["RMSE"])
|
| 125 |
+
model_stats[model]["mape_values"].append(metrics["MAPE"])
|
| 126 |
+
model_stats[model]["r2_values"].append(metrics["R²"])
|
| 127 |
+
model_stats[model]["smape_values"].append(metrics["SMAPE"])
|
| 128 |
+
model_stats[model]["uni_multi_values"].append(metrics.get("Uni-Multi", 0))
|
| 129 |
+
model_stats[model]["datasets"].add(result.get("dataset", ""))
|
| 130 |
+
model_stats[model]["domains"].add(result.get("domain", ""))
|
| 131 |
+
model_stats[model]["categories"].add(result.get("category", ""))
|
| 132 |
+
|
| 133 |
+
# Create aggregated table
|
| 134 |
+
table_data = []
|
| 135 |
+
for model, stats in model_stats.items():
|
| 136 |
+
# Calculate aggregated metrics (arithmetic mean for better aggregation)
|
| 137 |
+
avg_mae = np.mean(stats["mae_values"])
|
| 138 |
+
avg_uni_mae = np.mean(stats["uni_mae_values"])
|
| 139 |
+
avg_rmse = np.mean(stats["rmse_values"])
|
| 140 |
+
avg_mape = np.mean(stats["mape_values"])
|
| 141 |
+
avg_r2 = np.mean(stats["r2_values"])
|
| 142 |
+
avg_smape = np.mean(stats["smape_values"])
|
| 143 |
+
avg_uni_multi = np.mean(stats["uni_multi_values"])
|
| 144 |
+
|
| 145 |
+
row = {
|
| 146 |
+
"Model": model,
|
| 147 |
+
"Organization": stats["submitter"],
|
| 148 |
+
"Datasets": len(stats["datasets"]),
|
| 149 |
+
"Domains": len(stats["domains"]),
|
| 150 |
+
"Categories": len(stats["categories"]),
|
| 151 |
+
"MAE": f"{avg_mae:.3f}",
|
| 152 |
+
"Uni-MAE": f"{avg_uni_mae:.3f}",
|
| 153 |
+
"RMSE": f"{avg_rmse:.3f}",
|
| 154 |
+
"MAPE": f"{avg_mape:.1f}%",
|
| 155 |
+
"R²": f"{avg_r2:.3f}",
|
| 156 |
+
"SMAPE": f"{avg_smape:.1f}%",
|
| 157 |
+
"Uni-Multi": f"{avg_uni_multi:.3f}",
|
| 158 |
+
"Submission Date": stats["submission_date"]
|
| 159 |
+
}
|
| 160 |
+
table_data.append(row)
|
| 161 |
+
|
| 162 |
+
# Sort by MAE and add ranks
|
| 163 |
+
table_data.sort(key=lambda x: float(x["MAE"]))
|
| 164 |
+
for i, row in enumerate(table_data):
|
| 165 |
+
row["Rank"] = i + 1
|
| 166 |
+
|
| 167 |
+
return pd.DataFrame(table_data)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def get_filter_options():
|
| 171 |
+
"""Get all available filter options"""
|
| 172 |
+
results = load_results_with_metadata()
|
| 173 |
+
if not results:
|
| 174 |
+
return {"domains": [], "categories": [], "datasets": [], "models": []}
|
| 175 |
+
|
| 176 |
+
domains = sorted(list(set([r.get("domain", "") for r in results if r.get("domain", "")])))
|
| 177 |
+
categories = sorted(list(set([r.get("category", "") for r in results if r.get("category", "")])))
|
| 178 |
+
datasets = sorted(list(set([r.get("dataset", "") for r in results if r.get("dataset", "")])))
|
| 179 |
+
models = sorted(list(set([r.get("model", "") for r in results if r.get("model", "")])))
|
| 180 |
+
|
| 181 |
+
return {
|
| 182 |
+
"domains": ["all"] + domains,
|
| 183 |
+
"categories": ["all"] + categories,
|
| 184 |
+
"datasets": ["all"] + datasets,
|
| 185 |
+
"models": models
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_model_metadata(model_name):
|
| 190 |
+
"""Get metadata for a specific model"""
|
| 191 |
+
results = load_results_with_metadata()
|
| 192 |
+
if not results:
|
| 193 |
+
return None
|
| 194 |
+
|
| 195 |
+
# Find the first result for this model to get metadata
|
| 196 |
+
for result in results:
|
| 197 |
+
if result.get("model", "") == model_name:
|
| 198 |
+
return {
|
| 199 |
+
"model": result.get("model", ""),
|
| 200 |
+
"submitter": result.get("submitter", ""),
|
| 201 |
+
"submission_date": result.get("submission_date", ""),
|
| 202 |
+
"task": result.get("task", ""),
|
| 203 |
+
"dataset_version": result.get("dataset_version", ""),
|
| 204 |
+
"paper_url": result.get("paper_url", ""),
|
| 205 |
+
"code_url": result.get("code_url", ""),
|
| 206 |
+
"domains": sorted(list(set([r.get("domain", "") for r in results if r.get("model", "") == model_name and r.get("domain", "")]))),
|
| 207 |
+
"categories": sorted(list(set([r.get("category", "") for r in results if r.get("model", "") == model_name and r.get("category", "")]))),
|
| 208 |
+
"datasets": sorted(list(set([r.get("dataset", "") for r in results if r.get("model", "") == model_name and r.get("dataset", "")]))),
|
| 209 |
+
"total_evaluations": len([r for r in results if r.get("model", "") == model_name])
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
return None
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def create_model_metadata_display(selected_model):
|
| 216 |
+
"""Create a markdown display for model metadata"""
|
| 217 |
+
if not selected_model:
|
| 218 |
+
return "Select a model to view its metadata."
|
| 219 |
+
|
| 220 |
+
metadata = get_model_metadata(selected_model)
|
| 221 |
+
if not metadata:
|
| 222 |
+
return f"❌ No metadata found for model: {selected_model}"
|
| 223 |
+
|
| 224 |
+
# Create clickable links
|
| 225 |
+
paper_link = f"[📄 Paper]({metadata['paper_url']})" if metadata['paper_url'] else "📄 Paper: Not provided"
|
| 226 |
+
code_link = f"[💻 Code]({metadata['code_url']})" if metadata['code_url'] else "💻 Code: Not provided"
|
| 227 |
+
|
| 228 |
+
metadata_text = f"""
|
| 229 |
+
## 🔍 Model Metadata: {metadata['model']}
|
| 230 |
+
|
| 231 |
+
**Organization:** {metadata['submitter']}
|
| 232 |
+
**Submission Date:** {metadata['submission_date']}
|
| 233 |
+
**Task:** {metadata['task']}
|
| 234 |
+
**Dataset Version:** {metadata['dataset_version']}
|
| 235 |
+
|
| 236 |
+
**Links:**
|
| 237 |
+
{paper_link}
|
| 238 |
+
{code_link}
|
| 239 |
+
|
| 240 |
+
**Evaluation Coverage:**
|
| 241 |
+
- **Total Evaluations:** {metadata['total_evaluations']}
|
| 242 |
+
- **Domains:** {', '.join(metadata['domains']) if metadata['domains'] else 'None'}
|
| 243 |
+
- **Categories:** {', '.join(metadata['categories']) if metadata['categories'] else 'None'}
|
| 244 |
+
- **Datasets:** {', '.join(metadata['datasets'][:5])}{'...' if len(metadata['datasets']) > 5 else ''} ({len(metadata['datasets'])} total)
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
return metadata_text
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def get_overall_summary():
|
| 251 |
+
"""Generate summary statistics for the overall view"""
|
| 252 |
+
overall_df = create_overall_table()
|
| 253 |
+
|
| 254 |
+
if overall_df.empty:
|
| 255 |
+
return "No data available."
|
| 256 |
+
|
| 257 |
+
total_models = len(overall_df)
|
| 258 |
+
total_datasets = overall_df['Datasets'].sum()
|
| 259 |
+
total_domains = overall_df['Domains'].sum()
|
| 260 |
+
total_categories = overall_df['Categories'].sum()
|
| 261 |
+
|
| 262 |
+
# Calculate average metrics
|
| 263 |
+
mae_values = [float(x) for x in overall_df['MAE']]
|
| 264 |
+
r2_values = [float(x) for x in overall_df['R²']]
|
| 265 |
+
|
| 266 |
+
avg_mae = np.mean(mae_values)
|
| 267 |
+
best_mae = min(mae_values)
|
| 268 |
+
avg_r2 = np.mean(r2_values)
|
| 269 |
+
best_r2 = max(r2_values)
|
| 270 |
+
|
| 271 |
+
stats_text = f"""
|
| 272 |
+
**Overall Summary:**
|
| 273 |
+
- Total Models: {total_models}
|
| 274 |
+
- Total Dataset Evaluations: {total_datasets}
|
| 275 |
+
- Total Domain Evaluations: {total_domains}
|
| 276 |
+
- Total Category Evaluations: {total_categories}
|
| 277 |
+
|
| 278 |
+
**Performance Metrics:**
|
| 279 |
+
- Average MAE: {avg_mae:.3f}
|
| 280 |
+
- Best MAE: {best_mae:.3f}
|
| 281 |
+
- Average R²: {avg_r2:.3f}
|
| 282 |
+
- Best R²: {best_r2:.3f}
|
| 283 |
+
"""
|
| 284 |
+
|
| 285 |
+
return stats_text
|
src/populate.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data population functions for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from typing import Dict, List, Any, Optional
|
| 7 |
+
from .load_results import load_results_with_metadata, create_overall_table
|
| 8 |
+
|
| 9 |
+
def get_leaderboard_df(results_path: str, requests_path: str, eval_cols: List[str], benchmark_cols: List[str]) -> pd.DataFrame:
|
| 10 |
+
"""Get leaderboard dataframe"""
|
| 11 |
+
# Use our existing load_results function
|
| 12 |
+
results = load_results_with_metadata()
|
| 13 |
+
if not results:
|
| 14 |
+
return pd.DataFrame()
|
| 15 |
+
|
| 16 |
+
return create_overall_table()
|
| 17 |
+
|
| 18 |
+
def get_model_info_df(results_path: str, requests_path: str) -> pd.DataFrame:
|
| 19 |
+
"""Get model information dataframe"""
|
| 20 |
+
results = load_results_with_metadata()
|
| 21 |
+
if not results:
|
| 22 |
+
return pd.DataFrame()
|
| 23 |
+
|
| 24 |
+
# Extract unique model information
|
| 25 |
+
model_info = {}
|
| 26 |
+
for result in results:
|
| 27 |
+
model = result["model"]
|
| 28 |
+
if model not in model_info:
|
| 29 |
+
model_info[model] = {
|
| 30 |
+
"model": model,
|
| 31 |
+
"organization": result["submitter"],
|
| 32 |
+
"submission_date": result["submission_date"],
|
| 33 |
+
"task": result.get("task", ""),
|
| 34 |
+
"dataset_version": result.get("dataset_version", ""),
|
| 35 |
+
"paper_url": result.get("paper_url", ""),
|
| 36 |
+
"code_url": result.get("code_url", ""),
|
| 37 |
+
"model_type": "Foundation Model", # Default
|
| 38 |
+
"testdata_leakage": "No" # Default
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
return pd.DataFrame(list(model_info.values()))
|
| 42 |
+
|
| 43 |
+
def get_merged_df(leaderboard_df: pd.DataFrame, model_info_df: pd.DataFrame) -> pd.DataFrame:
|
| 44 |
+
"""Merge leaderboard and model info dataframes"""
|
| 45 |
+
if leaderboard_df.empty or model_info_df.empty:
|
| 46 |
+
return leaderboard_df
|
| 47 |
+
|
| 48 |
+
# Merge on model name
|
| 49 |
+
merged = pd.merge(leaderboard_df, model_info_df, on="model", how="left")
|
| 50 |
+
|
| 51 |
+
# Add rank column
|
| 52 |
+
if 'MAE' in merged.columns:
|
| 53 |
+
merged['Rank'] = merged['MAE'].rank(method='min').astype(int)
|
| 54 |
+
# Move Rank to front
|
| 55 |
+
cols = ['Rank'] + [col for col in merged.columns if col != 'Rank']
|
| 56 |
+
merged = merged[cols]
|
| 57 |
+
|
| 58 |
+
return merged
|
| 59 |
+
|
| 60 |
+
def get_evaluation_queue_df(requests_path: str, eval_cols: List[str]) -> tuple:
|
| 61 |
+
"""Get evaluation queue dataframes"""
|
| 62 |
+
# Return empty dataframes for now
|
| 63 |
+
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
src/utils.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for MUSED-FM Leaderboard
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
from typing import Dict, List, Any, Optional
|
| 8 |
+
|
| 9 |
+
def norm_sNavie(df: pd.DataFrame) -> pd.DataFrame:
|
| 10 |
+
"""Normalize dataframe using naive normalization"""
|
| 11 |
+
# Simple normalization - keep as is for now
|
| 12 |
+
return df
|
| 13 |
+
|
| 14 |
+
def pivot_df(file_path: str, tab_name: str) -> pd.DataFrame:
|
| 15 |
+
"""Pivot dataframe from file"""
|
| 16 |
+
try:
|
| 17 |
+
df = pd.read_csv(file_path)
|
| 18 |
+
# Simple pivot - return as is for now
|
| 19 |
+
return df
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Error reading {file_path}: {e}")
|
| 22 |
+
return pd.DataFrame()
|
| 23 |
+
|
| 24 |
+
def get_grouped_dfs() -> Dict[str, pd.DataFrame]:
|
| 25 |
+
"""Get grouped dataframes for different views"""
|
| 26 |
+
from .load_results import load_results_with_metadata, create_overall_table
|
| 27 |
+
|
| 28 |
+
# Load results
|
| 29 |
+
results = load_results_with_metadata()
|
| 30 |
+
if not results:
|
| 31 |
+
return {
|
| 32 |
+
'domain': pd.DataFrame(),
|
| 33 |
+
'frequency': pd.DataFrame(),
|
| 34 |
+
'term_length': pd.DataFrame(),
|
| 35 |
+
'univariate': pd.DataFrame(),
|
| 36 |
+
'overall': pd.DataFrame()
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
# Create overall dataframe
|
| 40 |
+
overall_df = create_overall_table()
|
| 41 |
+
|
| 42 |
+
# For now, return the same dataframe for all views
|
| 43 |
+
# In a real implementation, these would be different aggregations
|
| 44 |
+
return {
|
| 45 |
+
'domain': overall_df.copy(),
|
| 46 |
+
'frequency': overall_df.copy(),
|
| 47 |
+
'term_length': overall_df.copy(),
|
| 48 |
+
'univariate': overall_df.copy(),
|
| 49 |
+
'overall': overall_df.copy()
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
def pivot_existed_df(df: pd.DataFrame, tab_name: str) -> pd.DataFrame:
|
| 53 |
+
"""Pivot existing dataframe"""
|
| 54 |
+
if df.empty:
|
| 55 |
+
return df
|
| 56 |
+
|
| 57 |
+
# Add tab name as a column for identification
|
| 58 |
+
df_copy = df.copy()
|
| 59 |
+
df_copy['tab'] = tab_name
|
| 60 |
+
return df_copy
|
| 61 |
+
|
| 62 |
+
def rename_metrics(df: pd.DataFrame) -> pd.DataFrame:
|
| 63 |
+
"""Rename metrics columns"""
|
| 64 |
+
if df.empty:
|
| 65 |
+
return df
|
| 66 |
+
|
| 67 |
+
# Add rank column based on MAE
|
| 68 |
+
if 'MAE' in df.columns:
|
| 69 |
+
df_copy = df.copy()
|
| 70 |
+
df_copy['MASE_Rank'] = df_copy['MAE'].rank(method='min')
|
| 71 |
+
return df_copy
|
| 72 |
+
|
| 73 |
+
return df
|
| 74 |
+
|
| 75 |
+
def format_df(df: pd.DataFrame) -> pd.DataFrame:
|
| 76 |
+
"""Format dataframe for display"""
|
| 77 |
+
if df.empty:
|
| 78 |
+
return df
|
| 79 |
+
|
| 80 |
+
df_copy = df.copy()
|
| 81 |
+
|
| 82 |
+
# Format numeric columns
|
| 83 |
+
numeric_cols = ['MAE', 'Uni-MAE', 'RMSE', 'MAPE', 'R²', 'SMAPE', 'Uni-Multi']
|
| 84 |
+
for col in numeric_cols:
|
| 85 |
+
if col in df_copy.columns:
|
| 86 |
+
if col in ['MAPE', 'SMAPE']:
|
| 87 |
+
df_copy[col] = df_copy[col].apply(lambda x: f"{x:.1f}%" if pd.notna(x) else "")
|
| 88 |
+
else:
|
| 89 |
+
df_copy[col] = df_copy[col].apply(lambda x: f"{x:.3f}" if pd.notna(x) else "")
|
| 90 |
+
|
| 91 |
+
return df_copy
|