Calcharles commited on
Commit
7939a4f
Β·
1 Parent(s): 1ddac98

updated naming

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: MultiTS-Eval Leaderboard
3
  emoji: πŸ†
4
  colorFrom: pink
5
  colorTo: indigo
@@ -7,17 +7,17 @@ sdk: gradio
7
  sdk_version: 5.49.0
8
  app_file: app.py
9
  pinned: false
10
- short_description: Leaderboard for MultiTS-Eval Dataset
11
  license: mit
12
  ---
13
 
14
- # πŸ† MultiTS-Eval Leaderboard
15
 
16
- Welcome to the MultiTS-Eval (Multivariate Time Series Dataset) Leaderboard! This leaderboard tracks and compares the performance of different models on multivariate time series forecasting tasks.
17
 
18
- ## πŸ“Š About MultiTS-Eval
19
 
20
- MultiTS-Eval is a comprehensive multivariate time series dataset designed for forecasting tasks. The dataset contains multiple time series with various characteristics and complexities, making it an ideal benchmark for evaluating time series forecasting models.
21
 
22
  ## 🎯 Evaluation Metrics
23
 
@@ -52,7 +52,7 @@ The leaderboard uses the following metrics to evaluate model performance:
52
  5. Click "πŸš€ Submit Model" to add your results
53
 
54
  ### Dataset Information
55
- - Visit the "πŸ“‹ Dataset Info" tab for detailed information about MultiTS-Eval
56
  - Check submission guidelines and evaluation protocols
57
 
58
  ### Statistics
 
1
  ---
2
+ title: MUSEval Leaderboard
3
  emoji: πŸ†
4
  colorFrom: pink
5
  colorTo: indigo
 
7
  sdk_version: 5.49.0
8
  app_file: app.py
9
  pinned: false
10
+ short_description: Leaderboard for MUSEval Dataset
11
  license: mit
12
  ---
13
 
14
+ # πŸ† MUSEval Leaderboard
15
 
16
+ Welcome to the MUSEval (Multivariate Time Series Dataset) Leaderboard! This leaderboard tracks and compares the performance of different models on multivariate time series forecasting tasks.
17
 
18
+ ## πŸ“Š About MUSEval
19
 
20
+ MUSEval is a comprehensive multivariate time series dataset designed for forecasting tasks. The dataset contains multiple time series with various characteristics and complexities, making it an ideal benchmark for evaluating time series forecasting models.
21
 
22
  ## 🎯 Evaluation Metrics
23
 
 
52
  5. Click "πŸš€ Submit Model" to add your results
53
 
54
  ### Dataset Information
55
+ - Visit the "πŸ“‹ Dataset Info" tab for detailed information about MUSEval
56
  - Check submission guidelines and evaluation protocols
57
 
58
  ### Statistics
app.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Synthefy MultiTS-Eval Leaderboard - Main Gradio Application
3
  Following GIFT-Eval import structure with custom layout
4
  """
5
 
@@ -188,7 +188,7 @@ def create_leaderboard_interface():
188
  )
189
 
190
  # About section
191
- with gr.Accordion("πŸ“– About MultiTS-Eval Leaderboard", open=False, elem_id="about-accordion"):
192
  gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text", elem_id="about-text")
193
 
194
  # Citation section
@@ -208,7 +208,7 @@ def create_leaderboard_interface():
208
  gr.HTML("""
209
  <div style="text-align: center; padding: 20px;">
210
  <h3>Submit by creating a pull request with your model's performance here:</h3>
211
- <a href='https://github.com/Synthefy/MultiTS-Eval'
212
  target='_blank'
213
  style='display: inline-block;
214
  background-color: #FF6B6B;
 
1
  """
2
+ Synthefy MUSEval Leaderboard - Main Gradio Application
3
  Following GIFT-Eval import structure with custom layout
4
  """
5
 
 
188
  )
189
 
190
  # About section
191
+ with gr.Accordion("πŸ“– About MUSEval Leaderboard", open=False, elem_id="about-accordion"):
192
  gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text", elem_id="about-text")
193
 
194
  # Citation section
 
208
  gr.HTML("""
209
  <div style="text-align: center; padding: 20px;">
210
  <h3>Submit by creating a pull request with your model's performance here:</h3>
211
+ <a href='https://github.com/Synthefy/MUSEval'
212
  target='_blank'
213
  style='display: inline-block;
214
  background-color: #FF6B6B;
demo.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- MultiTS-Eval Leaderboard - Local Demo
3
  Imports from app.py to ensure identical functionality, loads a local demo leaderboard
4
  """
5
 
@@ -29,7 +29,7 @@ demo = create_leaderboard_interface()
29
 
30
  # Launch the demo
31
  if __name__ == "__main__":
32
- print("🎨 MultiTS-Eval Leaderboard Local Demo")
33
  print("=" * 50)
34
 
35
  try:
 
1
  """
2
+ MUSEval Leaderboard - Local Demo
3
  Imports from app.py to ensure identical functionality, loads a local demo leaderboard
4
  """
5
 
 
29
 
30
  # Launch the demo
31
  if __name__ == "__main__":
32
+ print("🎨 MUSEval Leaderboard Local Demo")
33
  print("=" * 50)
34
 
35
  try:
results/arima_submission/metadata.json CHANGED
@@ -5,6 +5,6 @@
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://www.wiley.com/en-us/Time+Series+Analysis%3A+Forecasting+and+Control%2C+5th+Edition-p-9781118675021",
8
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/arima_forecast.py",
9
  "description": "AutoRegressive Integrated Moving Average (ARIMA) model for time series forecasting. Uses autoregression, differencing, and moving averages to capture trends and patterns in multivariate time series data."
10
  }
 
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://www.wiley.com/en-us/Time+Series+Analysis%3A+Forecasting+and+Control%2C+5th+Edition-p-9781118675021",
8
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/arima_forecast.py",
9
  "description": "AutoRegressive Integrated Moving Average (ARIMA) model for time series forecasting. Uses autoregression, differencing, and moving averages to capture trends and patterns in multivariate time series data."
10
  }
results/exponential_smoothing_submission/metadata.json CHANGED
@@ -5,6 +5,6 @@
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://www.bauer.uh.edu/gardner/Exp-Sm-1985.pdf",
8
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/exponential_smoothing.py",
9
  "description": "Exponential Smoothing method for time series forecasting. Applies exponentially decreasing weights to historical observations."
10
  }
 
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://www.bauer.uh.edu/gardner/Exp-Sm-1985.pdf",
8
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/exponential_smoothing.py",
9
  "description": "Exponential Smoothing method for time series forecasting. Applies exponentially decreasing weights to historical observations."
10
  }
results/historical_inertia_submission/metadata.json CHANGED
@@ -5,6 +5,6 @@
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://arxiv.org/pdf/2103.16349",
8
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/historical_inertia.py",
9
  "description": "Historical Inertia baseline that repeates the recent history as the forecast."
10
  }
 
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
  "paper_url": "https://arxiv.org/pdf/2103.16349",
8
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/historical_inertia.py",
9
  "description": "Historical Inertia baseline that repeates the recent history as the forecast."
10
  }
results/linear_regression_submission/metadata.json CHANGED
@@ -4,7 +4,7 @@
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
- "paper_url": "https://github.com/Synthefy/MultiTS-Eval",
8
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/linear_regression.py",
9
  "description": "Linear Regression model over the history used to extrapolate the future, includes correlates for multivariate."
10
  }
 
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
+ "paper_url": "https://github.com/Synthefy/MUSEval",
8
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/linear_regression.py",
9
  "description": "Linear Regression model over the history used to extrapolate the future, includes correlates for multivariate."
10
  }
results/linear_trend_submission/metadata.json CHANGED
@@ -4,6 +4,6 @@
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/linear_trend.py",
8
  "description": "Linear Trend model for time series forecasting."
9
  }
 
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
  "dataset_version": "v1.0",
7
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/linear_trend.py",
8
  "description": "Linear Trend model for time series forecasting."
9
  }
results/mean_submission/metadata.json CHANGED
@@ -3,6 +3,6 @@
3
  "submitter": "Synthefy",
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
- "code_url": "https://github.com/Synthefy/MultiTS-Eval/blob/main/src/multieval/baselines/mean_forecast.py",
7
  "description": "Uses the mean of the historical values as the prediction for all future values."
8
  }
 
3
  "submitter": "Synthefy",
4
  "submission_date": "2025-10-10",
5
  "task": "multivariate_forecasting",
6
+ "code_url": "https://github.com/Synthefy/MUSEval/blob/main/src/museval/baselines/mean_forecast.py",
7
  "description": "Uses the mean of the historical values as the prediction for all future values."
8
  }
src/__init__.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- MultiTS-Eval Leaderboard source package
3
  """
4
 
5
  from .load_results import (
 
1
  """
2
+ MUSEval Leaderboard source package
3
  """
4
 
5
  from .load_results import (
src/about.py CHANGED
@@ -1,18 +1,18 @@
1
  """
2
- Text constants for MultiTS-Eval Leaderboard
3
  """
4
 
5
  TITLE = """
6
  <div id="main-title" style="text-align: center;">
7
- <h1 style="font-size: 30px; margin-bottom: 15px; font-weight: bold;">πŸ“Š MultiTS-Eval Leaderboard</h1>
8
  </div>
9
  """
10
 
11
  INTRODUCTION_TEXT = """
12
  <div style="font-size: 16px; line-height: 1.6;">
13
- Welcome to the MultiTS-Eval Leaderboard! This leaderboard provides comprehensive evaluation results of multivariate time series forecasting. Rows are models and columns are performance metrics.
14
  Use the filters below to explore results by different criteria and compare model performance across various domains and categories. For additional details on the models, click on the models to access the Model Inspector below the table.
15
- Metrics are explained in "About MultiTS-Eval Leaderboard" below the table. Submissions can be added at <a href="https://github.com/Synthefy/MultiTS-Eval">this github repository</a>.
16
  This leaderboard determines the best performing model for multivariate time series forecasting tasks, as measured by the lowest Mean Absolute Percentage Error (MAPE).
17
  High performance on these datasets provides evidence that a model can utilize historical time series relationships to make accurate predictions.
18
 
@@ -46,8 +46,8 @@ BENCHMARKS_TEXT = """
46
  ## Contact & Support
47
 
48
  For questions about the dataset or leaderboard:
49
- - **Issues**: Report issues on the [GitHub repository](https://github.com/Synthefy/MultiTS-Eval)
50
- - **Dataset**: Try the dataset yourself on [Hugging Face](https://huggingface.co/datasets/Synthefy/MultiTS-Eval)
51
 
52
  ## Leaderboard Information
53
 
 
1
  """
2
+ Text constants for MUSEval Leaderboard
3
  """
4
 
5
  TITLE = """
6
  <div id="main-title" style="text-align: center;">
7
+ <h1 style="font-size: 30px; margin-bottom: 15px; font-weight: bold;">πŸ“Š MUSEval Leaderboard</h1>
8
  </div>
9
  """
10
 
11
  INTRODUCTION_TEXT = """
12
  <div style="font-size: 16px; line-height: 1.6;">
13
+ Welcome to the MUSEval Leaderboard! This leaderboard provides comprehensive evaluation results of multivariate time series forecasting. Rows are models and columns are performance metrics.
14
  Use the filters below to explore results by different criteria and compare model performance across various domains and categories. For additional details on the models, click on the models to access the Model Inspector below the table.
15
+ Metrics are explained in "About MUSEval Leaderboard" below the table. Submissions can be added at <a href="https://github.com/Synthefy/MUSEval">this github repository</a>.
16
  This leaderboard determines the best performing model for multivariate time series forecasting tasks, as measured by the lowest Mean Absolute Percentage Error (MAPE).
17
  High performance on these datasets provides evidence that a model can utilize historical time series relationships to make accurate predictions.
18
 
 
46
  ## Contact & Support
47
 
48
  For questions about the dataset or leaderboard:
49
+ - **Issues**: Report issues on the [GitHub repository](https://github.com/Synthefy/MUSEval)
50
+ - **Dataset**: Try the dataset yourself on [Hugging Face](https://huggingface.co/datasets/Synthefy/MUSEval)
51
 
52
  ## Leaderboard Information
53
 
src/display/css_html_js.py CHANGED
@@ -1,9 +1,9 @@
1
  """
2
- CSS and styling for MultiTS-Eval Leaderboard
3
  """
4
 
5
  custom_css = """
6
- /* Custom styling for MultiTS-Eval Leaderboard */
7
 
8
  /* Main title styling */
9
  #main-title h1 {
 
1
  """
2
+ CSS and styling for MUSEval Leaderboard
3
  """
4
 
5
  custom_css = """
6
+ /* Custom styling for MUSEval Leaderboard */
7
 
8
  /* Main title styling */
9
  #main-title h1 {
src/display/utils.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Display utilities and column definitions for MultiTS-Eval Leaderboard
3
  """
4
 
5
  from dataclasses import dataclass
 
1
  """
2
+ Display utilities and column definitions for MUSEval Leaderboard
3
  """
4
 
5
  from dataclasses import dataclass
src/envs.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Environment configuration for MultiTS-Eval Leaderboard
3
  """
4
 
5
  import os
@@ -12,9 +12,9 @@ class API:
12
  print(f"Restarting space: {repo_id}")
13
 
14
  # Repository configuration
15
- REPO_ID = "multits-eval-leaderboard"
16
- QUEUE_REPO = "multits-eval-queue"
17
- RESULTS_REPO = "multits-eval-results"
18
 
19
  # Paths
20
  EVAL_REQUESTS_PATH = "eval_requests"
 
1
  """
2
+ Environment configuration for MUSEval Leaderboard
3
  """
4
 
5
  import os
 
12
  print(f"Restarting space: {repo_id}")
13
 
14
  # Repository configuration
15
+ REPO_ID = "museval-leaderboard"
16
+ QUEUE_REPO = "museval-queue"
17
+ RESULTS_REPO = "museval-results"
18
 
19
  # Paths
20
  EVAL_REQUESTS_PATH = "eval_requests"
src/load_results.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Data loading utilities for MultiTS-Eval Leaderboard
3
  """
4
 
5
  import json
 
1
  """
2
+ Data loading utilities for MUSEval Leaderboard
3
  """
4
 
5
  import json
src/populate.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Data population functions for MultiTS-Eval Leaderboard
3
  """
4
 
5
  import pandas as pd
 
1
  """
2
+ Data population functions for MUSEval Leaderboard
3
  """
4
 
5
  import pandas as pd
src/utils.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Utility functions for MultiTS-Eval Leaderboard
3
  """
4
 
5
  import pandas as pd
 
1
  """
2
+ Utility functions for MUSEval Leaderboard
3
  """
4
 
5
  import pandas as pd