Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
import numpy as np
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
quantization_config = BitsAndBytesConfig(
|
|
@@ -40,11 +41,10 @@ def read_video_pyav(container, indices):
|
|
| 40 |
frames.append(frame)
|
| 41 |
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
| 42 |
|
| 43 |
-
from huggingface_hub import hf_hub_download
|
| 44 |
|
| 45 |
# Download video from the hub
|
| 46 |
video_path_1 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
| 47 |
-
video_path_2 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="karate.mp4", repo_type="dataset")
|
| 48 |
|
| 49 |
container = av.open(video_path_1)
|
| 50 |
|
|
@@ -54,12 +54,12 @@ indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
|
| 54 |
clip_baby = read_video_pyav(container, indices)
|
| 55 |
|
| 56 |
|
| 57 |
-
container = av.open(video_path_2)
|
| 58 |
|
| 59 |
# sample uniformly 8 frames from the video (we can sample more for longer videos)
|
| 60 |
-
total_frames = container.streams.video[0].frames
|
| 61 |
-
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
| 62 |
-
clip_karate = read_video_pyav(container, indices)
|
| 63 |
|
| 64 |
# Each "content" is a list of dicts and you can add image/video/text modalities
|
| 65 |
conversation = [
|
|
@@ -83,13 +83,23 @@ conversation_2 = [
|
|
| 83 |
]
|
| 84 |
|
| 85 |
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 86 |
-
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
|
| 87 |
|
| 88 |
-
inputs = processor(
|
| 89 |
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
-
output = model.generate(**inputs, **generate_kwargs)
|
| 93 |
-
generated_text = processor.batch_decode(output, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
|
| 6 |
+
import gradio as gr
|
| 7 |
|
| 8 |
|
| 9 |
quantization_config = BitsAndBytesConfig(
|
|
|
|
| 41 |
frames.append(frame)
|
| 42 |
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
# Download video from the hub
|
| 46 |
video_path_1 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
| 47 |
+
#video_path_2 = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="karate.mp4", repo_type="dataset")
|
| 48 |
|
| 49 |
container = av.open(video_path_1)
|
| 50 |
|
|
|
|
| 54 |
clip_baby = read_video_pyav(container, indices)
|
| 55 |
|
| 56 |
|
| 57 |
+
#container = av.open(video_path_2)
|
| 58 |
|
| 59 |
# sample uniformly 8 frames from the video (we can sample more for longer videos)
|
| 60 |
+
#total_frames = container.streams.video[0].frames
|
| 61 |
+
#indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
| 62 |
+
#clip_karate = read_video_pyav(container, indices)
|
| 63 |
|
| 64 |
# Each "content" is a list of dicts and you can add image/video/text modalities
|
| 65 |
conversation = [
|
|
|
|
| 83 |
]
|
| 84 |
|
| 85 |
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 86 |
+
#prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
|
| 87 |
|
| 88 |
+
inputs = processor(prompt, videos=clip_baby, padding=True, return_tensors="pt").to(model.device)
|
| 89 |
|
| 90 |
+
def chat(i):
|
| 91 |
+
generate_kwargs = {"max_new_tokens": i, "do_sample": True, "top_p": 0.9}
|
| 92 |
|
| 93 |
+
output = model.generate(**inputs, **generate_kwargs)
|
| 94 |
+
generated_text = processor.batch_decode(output, skip_special_tokens=True)
|
| 95 |
+
|
| 96 |
+
return"answer"+generated_text
|
| 97 |
+
|
| 98 |
+
demo = gr.Interface(
|
| 99 |
+
fn=chat,
|
| 100 |
+
inputs=[gr.Slider(100,300)],
|
| 101 |
+
outputs=["text"],
|
| 102 |
+
)
|
| 103 |
|
| 104 |
+
# θ΅·ε
|
| 105 |
+
demo.launch()
|