File size: 8,294 Bytes
120ff1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoTokenizer
from qwen_vl_utils import process_vision_info
import torch
import numpy as np
import cv2, os, re

def _get_video_fps(url_or_p:str):
    cap = cv2.VideoCapture(url_or_p)
    if not cap.isOpened():
        raise ValueError(f"Cannot open video: {url_or_p}")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    cap.release()
    return fps

class eval_VideoScore2_float:
    def __init__(self, model_name: str):
        self.model, self.processor = self.load_model_processor(model_name)

        self.tokenizer = getattr(self.processor, "tokenizer", None)
        if self.tokenizer is None:
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_name,
                trust_remote_code=True,
                use_fast=False,
            )

    def load_model_processor(self, model_name):
        model = AutoModelForVision2Seq.from_pretrained(
            model_name,
            trust_remote_code=True,
        ).to("cuda")
        processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
        return model, processor
    
    
    def evaluate_video(self,     
            user_prompt: str,
            video_path: str,
            kwargs: dict
        ) -> str | None:
        if not os.path.exists(video_path):
            raise ValueError(f"not exist: {video_path}")
        max_tokens=kwargs.get("max_tokens",4096)
        infer_fps=kwargs.get("infer_fps",2.0)
        temperature=kwargs.get("temperature",0.7)
        if infer_fps == "raw":
            infer_fps=_get_video_fps(video_path)
        
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "video",
                        "video": video_path,
                        "fps":infer_fps
                    },
                    {
                        "type": "text", 
                        "text": user_prompt,
                    },
                ],
            }
        ]

        text = self.processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        try:
            image_inputs, video_inputs = process_vision_info(messages)
        except Exception as e:
            raise ValueError(f"error when reading: {video_path}")

        inputs = self.processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            fps=infer_fps,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to("cuda")
        
        gen_out = self.model.generate(
            **inputs,
            max_new_tokens=max_tokens,
            output_scores=True,
            return_dict_in_generate=True,
            do_sample=True,
            temperature=temperature,
        )
        sequences = gen_out.sequences  
        scores = gen_out.scores        

        input_len = inputs["input_ids"].shape[1]
        
        gen_token_ids = sequences[0, input_len:].tolist()
            
        output_text = self.processor.batch_decode(
            sequences[:, input_len:], skip_special_tokens=True, clean_up_tokenization_spaces=False
        )[0]
        
        pattern = r"visual quality:\s*(\d+).*?text-to-video alignment:\s*(\d+).*?physical/common-sense consistency:\s*(\d+)"
        match = re.search(pattern, output_text, re.DOTALL | re.IGNORECASE)
        if match:
            v_score_model = int(match.group(1))
            t_score_model = int(match.group(2))
            p_score_model = int(match.group(3))
        else:
            v_score_model = t_score_model = p_score_model = None 
        
        # def find_score_token_index_by_prompt(prompt_text: str) -> int:
        #     prompt_tokens = self.tokenizer.encode(prompt_text, add_special_tokens=False)
        #     gen_ids = gen_token_ids  
        #     print("Prompt tokens:", prompt_tokens, self.tokenizer.decode(prompt_tokens))
        #     print("Generated tokens snippet:", gen_ids[:50], self.tokenizer.decode(gen_ids[:50]))
        #     for i in range(len(gen_ids) - len(prompt_tokens)):
        #         if gen_ids[i:i+len(prompt_tokens)] == prompt_tokens:
        #             j = i + len(prompt_tokens)
        #             while j < len(gen_ids):
        #                 token_str = self.tokenizer.decode([gen_ids[j]]).strip()
        #                 if token_str.isdigit():
        #                     return j
        #                 j += 1
        #     return -1
        
        def find_score_token_index_by_prompt_v0(prompt_text: str) -> int:
            prompt_tokens = self.tokenizer.encode(prompt_text, add_special_tokens=False)
            gen_ids = gen_token_ids  

            for i in range(len(gen_ids) - len(prompt_tokens)):
                if gen_ids[i:i+len(prompt_tokens)] == prompt_tokens:
                    j = i + len(prompt_tokens)
                    while j < len(gen_ids):
                        token_str = self.tokenizer.decode([gen_ids[j]], skip_special_tokens=True).strip()
                        if token_str.isdigit():
                            return j
                        j += 1
            return -1
        
        def find_score_token_index_by_prompt(prompt_text: str):
            import re
            gen_ids = gen_token_ids
            gen_str = self.tokenizer.decode(gen_ids, skip_special_tokens=False)

            pattern = r"(?:\(\d+\)\s*|\n\s*)?" + re.escape(prompt_text)
            match = re.search(pattern, gen_str, flags=re.IGNORECASE)
            if not match:
                return -1
            after_text = gen_str[match.end():]
            num_match = re.search(r"\d", after_text)
            if not num_match:
                return -1

            target_substr = gen_str[:match.end() + num_match.start() + 1]

            for i in range(len(gen_ids)):
                partial = self.tokenizer.decode(gen_ids[:i+1], skip_special_tokens=False)
                if partial == target_substr:
                    return i
            return -1

        
        idx_v = find_score_token_index_by_prompt("visual quality:")
        idx_t = find_score_token_index_by_prompt("text-to-video alignment:")
        idx_p = find_score_token_index_by_prompt("physical/common-sense consistency:")
        
        def ll_based_soft_score_normed(hard_val, token_idx) -> float:
            if hard_val is None or token_idx < 0:
                return None
            logits = scores[token_idx][0]  # [vocab]
            score_range = list(range(1, 6))
            score_probs = []  # [(score, prob)]

            for s in score_range:
                ids = self.tokenizer.encode(str(s), add_special_tokens=False)
                if len(ids) == 1:
                    tid = ids[0]
                    logp = torch.log_softmax(logits, dim=-1)[tid].item()
                    prob = float(np.exp(logp))
                    score_probs.append((s, prob))
                else:
                    print(f"[warn] score {s} maps to multi-token: {ids}, skipping.")

            if not score_probs:
                print("[warn] No valid score token found (1–5 all multi-token?)")
                return None

            scores_list, probs_list = zip(*score_probs)
            total_prob = sum(probs_list)
            max_prob = max(probs_list)
            max_idx = probs_list.index(max_prob)
            best_score = scores_list[max_idx]

            normalized_prob = max_prob / total_prob if total_prob > 0 else 0
            soft_score = best_score * normalized_prob

            print(f"hard score={hard_val}, token_idx={token_idx}")
            for s, p in score_probs:
                print(f"  score {s}: prob={p:.4f}")
            print(f"  max prob={max_prob:.4f} at score={best_score}, total prob={total_prob:.4f}")
            print(f"  normalized prob={normalized_prob:.4f}, soft score={soft_score:.4f}")

            return round(soft_score,4)
        
        
        v_soft = ll_based_soft_score_normed(v_score_model, idx_v)
        t_soft = ll_based_soft_score_normed(t_score_model, idx_t)
        p_soft = ll_based_soft_score_normed(p_score_model, idx_p)

        return v_soft, t_soft, p_soft, output_text