Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| from omegaconf import OmegaConf | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| import glob | |
| import pickle | |
| from tqdm import tqdm | |
| import copy | |
| from musetalk.utils.utils import get_file_type,get_video_fps,datagen | |
| from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder | |
| from musetalk.utils.blending import get_image | |
| from musetalk.utils.utils import load_all_model | |
| import shutil | |
| # load model weights | |
| audio_processor,vae,unet,pe = load_all_model() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| timesteps = torch.tensor([0], device=device) | |
| def main(args): | |
| inference_config = OmegaConf.load(args.inference_config) | |
| print(inference_config) | |
| for task_id in inference_config: | |
| video_path = inference_config[task_id]["video_path"] | |
| audio_path = inference_config[task_id]["audio_path"] | |
| bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) | |
| input_basename = os.path.basename(video_path).split('.')[0] | |
| audio_basename = os.path.basename(audio_path).split('.')[0] | |
| output_basename = f"{input_basename}_{audio_basename}" | |
| result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs | |
| crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input | |
| os.makedirs(result_img_save_path,exist_ok =True) | |
| if args.output_vid_name=="": | |
| output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") | |
| else: | |
| output_vid_name = os.path.join(args.result_dir, args.output_vid_name) | |
| ############################################## extract frames from source video ############################################## | |
| if get_file_type(video_path)=="video": | |
| save_dir_full = os.path.join(args.result_dir, input_basename) | |
| os.makedirs(save_dir_full,exist_ok = True) | |
| cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" | |
| os.system(cmd) | |
| input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) | |
| fps = get_video_fps(video_path) | |
| else: # input img folder | |
| input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) | |
| input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
| fps = args.fps | |
| #print(input_img_list) | |
| ############################################## extract audio feature ############################################## | |
| whisper_feature = audio_processor.audio2feat(audio_path) | |
| whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
| ############################################## preprocess input image ############################################## | |
| if os.path.exists(crop_coord_save_path) and args.use_saved_coord: | |
| print("using extracted coordinates") | |
| with open(crop_coord_save_path,'rb') as f: | |
| coord_list = pickle.load(f) | |
| frame_list = read_imgs(input_img_list) | |
| else: | |
| print("extracting landmarks...time consuming") | |
| coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) | |
| with open(crop_coord_save_path, 'wb') as f: | |
| pickle.dump(coord_list, f) | |
| i = 0 | |
| input_latent_list = [] | |
| for bbox, frame in zip(coord_list, frame_list): | |
| if bbox == coord_placeholder: | |
| continue | |
| x1, y1, x2, y2 = bbox | |
| crop_frame = frame[y1:y2, x1:x2] | |
| crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
| latents = vae.get_latents_for_unet(crop_frame) | |
| input_latent_list.append(latents) | |
| # to smooth the first and the last frame | |
| frame_list_cycle = frame_list + frame_list[::-1] | |
| coord_list_cycle = coord_list + coord_list[::-1] | |
| input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
| ############################################## inference batch by batch ############################################## | |
| print("start inference") | |
| video_num = len(whisper_chunks) | |
| batch_size = args.batch_size | |
| gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) | |
| res_frame_list = [] | |
| for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
| tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] | |
| audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384 | |
| audio_feature_batch = pe(audio_feature_batch) | |
| pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample | |
| recon = vae.decode_latents(pred_latents) | |
| for res_frame in recon: | |
| res_frame_list.append(res_frame) | |
| ############################################## pad to full image ############################################## | |
| print("pad talking image to original video") | |
| for i, res_frame in enumerate(tqdm(res_frame_list)): | |
| bbox = coord_list_cycle[i%(len(coord_list_cycle))] | |
| ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) | |
| x1, y1, x2, y2 = bbox | |
| try: | |
| res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
| except: | |
| # print(bbox) | |
| continue | |
| combine_frame = get_image(ori_frame,res_frame,bbox) | |
| cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) | |
| cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 temp.mp4" | |
| print(cmd_img2video) | |
| os.system(cmd_img2video) | |
| cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" | |
| print(cmd_combine_audio) | |
| os.system(cmd_combine_audio) | |
| os.remove("temp.mp4") | |
| shutil.rmtree(result_img_save_path) | |
| print(f"result is save to {output_vid_name}") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml") | |
| parser.add_argument("--bbox_shift", type=int, default=0) | |
| parser.add_argument("--result_dir", default='./results', help="path to output") | |
| parser.add_argument("--fps", type=int, default=25) | |
| parser.add_argument("--batch_size", type=int, default=8) | |
| parser.add_argument("--output_vid_name", type=str,default='') | |
| parser.add_argument("--use_saved_coord", | |
| action="store_true", | |
| help='use saved coordinate to save time') | |
| args = parser.parse_args() | |
| main(args) | |