File size: 11,126 Bytes
56f49e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import io
import os
from typing import Optional, Tuple, List
import re
# Mock OCR function (in real implementation, you'd use pytesseract or similar)
def detect_text_in_image(image: np.ndarray) -> List[str]:
"""Mock function to detect existing text in image"""
# In a real implementation, this would use OCR like pytesseract
# For demo purposes, we'll return some sample detected text
return ["Sample text detected", "Another text element"]
def add_text_to_image(
image: np.ndarray,
new_text: str,
text_position: str,
font_size: int,
text_color: str,
background_color: str,
detect_existing: bool,
accessibility_description: str
) -> Tuple[np.ndarray, str, str]:
"""
Add text overlay to image with accessibility features
"""
if image is None:
return None, "Please upload an image first", ""
# Convert numpy array to PIL Image
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
# Detect existing text if requested
existing_text_info = ""
if detect_existing:
try:
detected_texts = detect_text_in_image(image)
if detected_texts:
existing_text_info = "Detected existing text:\n" + "\n".join(f"• {text}" for text in detected_texts)
else:
existing_text_info = "No existing text detected in the image."
except Exception as e:
existing_text_info = f"Text detection failed: {str(e)}"
# Add new text overlay
draw = ImageDraw.Draw(pil_image)
# Create font (you might want to use a proper font file in production)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except:
font = ImageFont.load_default()
# Get image dimensions
img_width, img_height = pil_image.size
# Calculate text position
text_bbox = draw.textbbox((0, 0), new_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
position_map = {
"top-left": (10, 10),
"top-center": ((img_width - text_width) // 2, 10),
"top-right": (img_width - text_width - 10, 10),
"center-left": (10, (img_height - text_height) // 2),
"center": ((img_width - text_width) // 2, (img_height - text_height) // 2),
"center-right": (img_width - text_width - 10, (img_height - text_height) // 2),
"bottom-left": (10, img_height - text_height - 10),
"bottom-center": ((img_width - text_width) // 2, img_height - text_height - 10),
"bottom-right": (img_width - text_width - 10, img_height - text_height - 10)
}
x, y = position_map.get(text_position, position_map["bottom-center"])
# Add background rectangle for better readability (optional)
if background_color != "transparent":
# Convert hex color to RGB
if background_color.startswith('#'):
bg_rgb = tuple(int(background_color[i:i+2], 16) for i in (1, 3, 5))
else:
bg_rgb = (0, 0, 0) # default black
# Draw background rectangle
padding = 5
draw.rectangle([
x - padding, y - padding,
x + text_width + padding, y + text_height + padding
], fill=bg_rgb)
# Convert text color to RGB
if text_color.startswith('#'):
text_rgb = tuple(int(text_color[i:i+2], 16) for i in (1, 3, 5))
else:
text_rgb = (255, 255, 255) # default white
# Draw text
draw.text((x, y), new_text, fill=text_rgb, font=font)
# Convert back to numpy array
result_image = np.array(pil_image)
# Generate accessibility description
if not accessibility_description:
accessibility_description = f"Image with text overlay: '{new_text}' positioned at {text_position}"
# Combine all information for accessibility
full_accessibility_info = f"Accessibility Description: {accessibility_description}\n\n"
if existing_text_info:
full_accessibility_info += f"{existing_text_info}\n\n"
full_accessibility_info += f"Added text: '{new_text}' at {text_position} with font size {font_size}"
return result_image, full_accessibility_info, existing_text_info
# Create the Gradio interface
with gr.Blocks(title="Premium Image Text Overlay - Accessibility Edition") as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1 style="color: #4A90E2; font-size: 2.5em;">🖼️ Premium Image Text Overlay</h1>
<p style="font-size: 1.2em; color: #666;">Enhanced accessibility for visually impaired users with text detection</p>
<p><a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></p>
</div>
""")
with gr.Tabs():
with gr.Tab("🖼️ Image Editor"):
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Upload Image",
type="numpy",
height=400,
interactive=True
)
with gr.Accordion("🔍 Text Detection Settings", open=True):
detect_existing = gr.Checkbox(
label="Detect existing text in image",
value=True,
info="Automatically detect and display any text already present in the uploaded image"
)
existing_text_display = gr.Textbox(
label="Existing Text Detection Results",
interactive=False,
max_lines=5,
placeholder="Existing text will appear here after detection..."
)
with gr.Column():
output_image = gr.Image(
label="Result Image",
type="numpy",
height=400,
interactive=False
)
accessibility_output = gr.Textbox(
label="♿ Accessibility Information",
interactive=False,
max_lines=8,
placeholder="Comprehensive accessibility description will appear here..."
)
with gr.Accordion("✏️ Add New Text", open=True):
with gr.Row():
new_text = gr.Textbox(
label="Text to Add",
placeholder="Enter your text here...",
max_lines=3
)
text_position = gr.Dropdown(
choices=[
"top-left", "top-center", "top-right",
"center-left", "center", "center-right",
"bottom-left", "bottom-center", "bottom-right"
],
value="bottom-center",
label="Text Position"
)
with gr.Row():
font_size = gr.Slider(
minimum=10,
maximum=100,
value=24,
step=2,
label="Font Size"
)
text_color = gr.ColorPicker(
value="#FFFFFF",
label="Text Color"
)
background_color = gr.ColorPicker(
value="#000000",
label="Background Color",
info="Set to transparent for no background"
)
accessibility_description = gr.Textbox(
label="Custom Accessibility Description",
placeholder="Add a custom description for screen readers (optional)...",
max_lines=3
)
with gr.Row():
process_btn = gr.Button(
"✨ Add Text & Generate Accessibility Info",
variant="primary",
size="lg"
)
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
with gr.Tab("ℹ️ How to Use"):
gr.Markdown("""
### 🎯 Premium Features for Accessibility
**For Visually Impaired Users:**
- **Automatic Text Detection**: Our system automatically detects existing text in your uploaded images
- **Comprehensive Descriptions**: Get detailed accessibility information including detected text and added overlays
- **Screen Reader Friendly**: All outputs are optimized for screen reader compatibility
**How It Works:**
1. **Upload** your image using the file picker or drag-and-drop
2. **Enable** "Detect existing text in image" to automatically find text already present
3. **Add** your new text with customizable position, size, and colors
4. **Review** the accessibility information that combines detected text and your additions
5. **Download** the final image with complete accessibility metadata
**Accessibility Best Practices:**
- Always provide meaningful custom descriptions when possible
- Use high contrast colors for better visibility
- Consider the context of existing text when adding new overlays
- The accessibility information is designed to be read by screen readers
""")
# Event handlers
process_btn.click(
fn=add_text_to_image,
inputs=[
input_image,
new_text,
text_position,
font_size,
text_color,
background_color,
detect_existing,
accessibility_description
],
outputs=[
output_image,
accessibility_output,
existing_text_display
]
)
clear_btn.click(
fn=lambda: (None, "", "", ""),
inputs=[],
outputs=[
input_image,
output_image,
accessibility_output,
existing_text_display
]
)
# Auto-detect existing text when image is uploaded (if detection is enabled)
input_image.change(
fn=lambda img, detect: (detect_text_in_image(img) if detect and img is not None else []) if detect else [],
inputs=[input_image, detect_existing],
outputs=existing_text_display
)
# Launch the app
if __name__ == "__main__":
demo.launch() |