File size: 12,717 Bytes
792b77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gradio as gr
import spaces
import torch
from diffusers import DiffusionPipeline
import numpy as np
from PIL import Image
import tempfile
import os
from moviepy.editor import ImageSequenceClip, AudioFileClip
import soundfile as sf
from transformers import pipeline
import time
from typing import List, Tuple, Optional
import json

from config import Config
from utils import VideoGenerator, AudioGenerator, ImageGenerator

# Initialize generators
image_gen = ImageGenerator()
audio_gen = AudioGenerator()
video_gen = VideoGenerator()

@spaces.GPU(duration=1500)
def compile_transformer():
    """Compile the Stable Diffusion transformer for faster inference"""
    with spaces.aoti_capture(image_gen.pipe.transformer) as call:
        image_gen.pipe("test compilation prompt")
    
    exported = torch.export.export(
        image_gen.pipe.transformer,
        args=call.args,
        kwargs=call.kwargs,
    )
    return spaces.aoti_compile(exported)

# Compile during startup
print("Compiling AI models for optimal performance...")
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, image_gen.pipe.transformer)
print("βœ… Models compiled successfully!")

@spaces.GPU(duration=120)
def generate_video(
    prompt: str,
    duration: int,
    fps: int,
    audio_type: str,
    voice_gender: str,
    music_style: str,
    num_images: int,
    image_size: int,
    motion_strength: float,
    progress=gr.Progress()
) -> str:
    """
    Generate a video from text prompt with AI-generated images and audio
    
    Args:
        prompt: Text description for the video content
        duration: Duration of the video in seconds
        fps: Frames per second for the video
        audio_type: Type of audio to generate (narration/music/both)
        voice_gender: Gender for voice narration
        music_style: Style of background music
        num_images: Number of unique images to generate
        image_size: Size of generated images
        motion_strength: Strength of motion between frames
    
    Returns:
        Path to the generated video file
    """
    try:
        progress(0.1, desc="Starting video generation...")
        
        # Calculate timing
        total_frames = duration * fps
        frames_per_image = total_frames // num_images
        
        progress(0.2, desc="Generating images...")
        # Generate images
        images = []
        for i in range(num_images):
            # Slightly vary the prompt for each image
            varied_prompt = f"{prompt}, frame {i+1}, cinematic lighting"
            image = image_gen.generate_image(
                prompt=varied_prompt,
                size=(image_size, image_size)
            )
            images.append(image)
            progress(0.2 + (i / num_images) * 0.3, desc=f"Generated image {i+1}/{num_images}")
        
        progress(0.5, desc="Generating audio...")
        # Generate audio
        audio_path = None
        if audio_type in ["narration", "both"]:
            narration_path = audio_gen.generate_narration(
                text=prompt,
                gender=voice_gender,
                duration=duration
            )
            audio_path = narration_path
        
        if audio_type in ["music", "both"]:
            music_path = audio_gen.generate_music(
                style=music_style,
                duration=duration
            )
            if audio_path and audio_type == "both":
                # Mix narration and music
                audio_path = audio_gen.mix_audio(audio_path, music_path)
            elif not audio_path:
                audio_path = music_path
        
        progress(0.7, desc="Creating video frames...")
        # Create video frames with motion
        video_frames = video_gen.create_motion_frames(
            images=images,
            frames_per_image=frames_per_image,
            motion_strength=motion_strength
        )
        
        progress(0.9, desc="Composing final video...")
        # Create video
        video_path = video_gen.create_video(
            frames=video_frames,
            fps=fps,
            audio_path=audio_path,
            duration=duration
        )
        
        progress(1.0, desc="Video generation complete!")
        return video_path
        
    except Exception as e:
        raise gr.Error(f"Error generating video: {str(e)}")

@spaces.GPU(duration=60)
def generate_sample_image(prompt: str, style: str) -> Image.Image:
    """Generate a sample image for preview"""
    styled_prompt = f"{prompt}, {style} style, high quality, detailed"
    return image_gen.generate_image(
        prompt=styled_prompt,
        size=(512, 512)
    )

def create_demo():
    """Create the Gradio demo interface"""
    
    with gr.Blocks(
        title="AI Video Generator",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .header-text {
            text-align: center;
            margin-bottom: 2rem;
        }
        .preview-box {
            border: 2px dashed #ccc;
            border-radius: 10px;
            padding: 20px;
            text-align: center;
        }
        """
    ) as demo:
        
        gr.HTML("""
        <div class="header-text">
            <h1>🎬 AI Video Generator</h1>
            <p>Create stunning videos from text prompts using AI-powered image and audio generation</p>
            <p><a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></p>
        </div>
        """)
        
        with gr.Tabs():
            with gr.TabItem("πŸŽ₯ Generate Video"):
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### πŸ“ Video Description")
                        prompt_input = gr.Textbox(
                            label="Enter your video concept",
                            placeholder="A serene landscape with mountains and a lake at sunset...",
                            lines=3,
                            value="A beautiful forest with sunlight filtering through the trees, birds flying, peaceful nature scene"
                        )
                        
                        gr.Markdown("### βš™οΈ Video Settings")
                        with gr.Row():
                            duration_slider = gr.Slider(
                                minimum=5,
                                maximum=30,
                                value=10,
                                step=1,
                                label="Duration (seconds)"
                            )
                            fps_slider = gr.Slider(
                                minimum=12,
                                maximum=30,
                                value=24,
                                step=1,
                                label="FPS"
                            )
                        
                        with gr.Row():
                            num_images_slider = gr.Slider(
                                minimum=3,
                                maximum=10,
                                value=5,
                                step=1,
                                label="Number of Scenes"
                            )
                            image_size_slider = gr.Slider(
                                minimum=256,
                                maximum=768,
                                value=512,
                                step=128,
                                label="Image Size"
                            )
                        
                        motion_slider = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.3,
                            step=0.1,
                            label="Motion Strength"
                        )
                    
                    with gr.Column(scale=1):
                        gr.Markdown("### 🎡 Audio Settings")
                        audio_type_radio = gr.Radio(
                            choices=["narration", "music", "both"],
                            value="both",
                            label="Audio Type"
                        )
                        
                        voice_radio = gr.Radio(
                            choices=["male", "female"],
                            value="female",
                            label="Voice Gender"
                        )
                        
                        music_dropdown = gr.Dropdown(
                            choices=["ambient", "cinematic", "upbeat", "peaceful", "dramatic"],
                            value="peaceful",
                            label="Music Style"
                        )
                
                generate_btn = gr.Button(
                    "🎬 Generate Video",
                    variant="primary",
                    size="lg"
                )
                
                with gr.Column():
                    video_output = gr.Video(
                        label="Generated Video",
                        visible=False
                    )
                    
                    status_text = gr.Textbox(
                        label="Status",
                        visible=False,
                        interactive=False
                    )
            
            with gr.TabItem("πŸ–ΌοΈ Image Preview"):
                gr.Markdown("### Preview image generation before creating the full video")
                
                with gr.Row():
                    preview_prompt = gr.Textbox(
                        label="Test Prompt",
                        placeholder="Enter a prompt to test image generation...",
                        value="A majestic dragon flying over a castle"
                    )
                
                with gr.Row():
                    style_dropdown = gr.Dropdown(
                        choices=["photorealistic", "anime", "oil painting", "watercolor", "3D render"],
                        value="photorealistic",
                        label="Art Style"
                    )
                    preview_btn = gr.Button("Generate Preview", variant="secondary")
                
                preview_image = gr.Image(
                    label="Image Preview",
                    type="pil",
                    elem_classes=["preview-box"]
                )
        
        # Example prompts
        gr.Markdown("### πŸ’‘ Example Prompts")
        examples = gr.Examples(
            examples=[
                ["A futuristic city with flying cars and neon lights at night", 15, 24, "both", "female", "cinematic", 5, 512, 0.5],
                ["A peaceful beach with waves crashing and palm trees swaying", 10, 24, "music", "male", "peaceful", 4, 512, 0.3],
                ["A magical forest with glowing mushrooms and fairy lights", 12, 24, "both", "female", "ambient", 6, 512, 0.4],
                ["A bustling marketplace in ancient Rome", 8, 24, "narration", "male", "dramatic", 4, 512, 0.6],
            ],
            inputs=[prompt_input, duration_slider, fps_slider, audio_type_radio, voice_radio, music_dropdown, num_images_slider, image_size_slider, motion_slider],
            outputs=[video_output],
            fn=generate_video,
        )
        
        # Event handlers
        generate_btn.click(
            fn=generate_video,
            inputs=[
                prompt_input, duration_slider, fps_slider,
                audio_type_radio, voice_radio, music_dropdown,
                num_images_slider, image_size_slider, motion_slider
            ],
            outputs=[video_output],
            show_progress=True
        ).then(
            fn=lambda: "Video generation complete! You can now download your video.",
            outputs=[status_text]
        )
        
        preview_btn.click(
            fn=generate_sample_image,
            inputs=[preview_prompt, style_dropdown],
            outputs=[preview_image]
        )
        
        # Show status text when generation starts
        generate_btn.click(
            fn=lambda: "Starting video generation... This may take a few minutes.",
            outputs=[status_text]
        )
        
        # Make video output visible after generation
        generate_btn.click(
            fn=lambda: gr.Video(visible=True),
            outputs=[video_output]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        share=True,
        show_error=True,
        show_tips=True
    )